
整数問題についてですが、
「正の整数aに対してa²を4で割ったときの余りを求めよ」という問題で、答えは、「aが偶数であるとき=0,
aが奇数のとき=1」となるのですが、
この求め方として、「a=1,2,3…のときa²=1,4,9…だからa²を4で割った余りはaの偶奇で決まるから…」というように、aの偶奇で考えているのですが、どのように考えればこのような発想が浮かぶのでしょうか?
また、a²=4k±1,4k+2などというように、a²から直接求めることはできるのでしょうか?
A 回答 (12件中11~12件)
- 最新から表示
- 回答順に表示
No.11
- 回答日時:
a=4k+r
a²=(4k+r)²=4(4k²+2kr)+r²
だから
a²を4で割った余りは,(aを4で割った余りの2乗)を4で割った余りに等しい
a=2k+r
a²=(2k+r)²=4(k²+kr)+r²
だから
a²を4で割った余りは,aを2で割った余りの2乗に等しい
No.12
- 回答日時:
4を法として考えれば一発です。
合同式を使う。a≡0,1,2,3(mod4)だから両辺を2乗すると
a²≡0,1,4,9≡0,1,0,1(mod4)。
これで終わり。[上の意味は、a²を4で割ると余りが0か1]
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 大学受験 合同式 1 2022/09/03 12:37
- その他(教育・科学・学問) 小学生の算数の商について 3 2023/03/06 14:11
- 数学 どうか教えてください。 4 2022/07/02 20:18
- JavaScript 助けてください‼︎ javascriptで質問があります。 配列を定義して、 29342、45342 3 2022/06/26 22:06
- 数学 nは正の整数であり、偶数。 n(n+1)(n+2)(n+3)は素因数が3つ。 nを求めよ。 という問 8 2022/09/26 18:15
- 数学 [x] は,正の整数xの正の約数の個数を表すものとする。 例えば, 12の正の約数は 1, 2, 3 4 2022/08/01 11:20
- C言語・C++・C# C#の問題で2つの整数a,bの最大公約数(GCD)を求めるユークリッドの互除法は,aをbで割った余り 2 2022/06/26 16:52
- 数学 中2 数学 8 2023/06/27 21:56
- 数学 正の数aは4の倍数で、7でわると2余る数である。√576-aが正の整数となるようなaの値を求める 12 2023/06/19 19:34
- 数学 教えてください。 2 2022/06/30 14:26
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
20人を4人の5チームに分ける通...
-
小学校4年生の算数の教科書で...
-
Accessで割り算の余りを求める...
-
中3の数学の問題
-
1 から 9 までの数字を使って引...
-
読んで割っても6で割っても3余...
-
高1数学Aの問題で、 「a、bは整...
-
190分はなん時間何分ですか?
-
〖エクセル〗MOD関数で、小さな...
-
2は5で割り切れません。 あまり...
-
場合の数
-
4の100乗を、7で割った余りとい...
-
a^kをmで割った余り は r^kをm...
-
整数問題についてですが、 「正...
-
商と余りが同じ整数
-
高校数学、証明の問題
-
2つの整数124,77を自然数nで割...
-
数学Aの整数の性質についての質...
-
高校数学:数列 至急解答解説...
-
場合の数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
高1数学Aの問題で、 「a、bは整...
-
2は5で割り切れません。 あまり...
-
小学校4年生の算数の教科書で...
-
0から9までの数字を使ってでき...
-
読んで割っても6で割っても3余...
-
190分はなん時間何分ですか?
-
4の100乗を、7で割った余りとい...
-
14n+52と4n+17の最大公約数が...
-
負の余りはあり得ますか?
-
中3の数学の問題
-
解き方を教えてください。 中3...
-
順列、組み合わせの問題です。 ...
-
問題 整式X³+X²-2X+1を整式B...
-
5進法の計算問題の解き方
-
1000本のワインがあって、1つは...
-
〖エクセル〗MOD関数で、小さな...
-
1から9の数字を書いたカードが...
-
Accessで割り算の余りを求める...
-
これの求め方を教えて下さい!...
-
順列 組合せの問題
おすすめ情報
回答ありがとうございました。整数問題では、実験して、ある程度規則性を見いだすと簡単に解けるということがわかりました