高校三年生の合唱祭で何を歌いましたか?

1、2+1/3、3+1/9、4+1/27・・・・ この数列の初項から第nまでの和を求めよの問題について解説で
(1+2+3+・・・+n)+{1/3+1/3^2+1/3^3・・・1/3^(n-1)}となっていたのですが、{1/3+1/3^2+1/3^3・・・1/3^(n-1)}の部分でなぜ最後の項はn-1乗になっているのですか?1/3は第2項からの数列になるのですか?これをシグマで表すと、どうなりますか? よく分からないので教えてください?                                                                                            

A 回答 (2件)

 この数列を {an} とおいてみます。


  a1 = 1
  a2 = 2 + 1/3
  a3 = 3 + 1/9 = 3 + 1/(3^2)
  a4 = 4 + 1/27 = 3 + 1/(3^3)
ですから,a2 以降の分数部分は (1/3)^(n - 1) です。ですから,一般項は,
  an = 1(n = 1 のとき)
  an = n + (1/3)^(n - 1)(それ以外)
になります(場合わけがあることに注意;下の式で n = 1 とすると,1 + (1/3)^0 = 2 になってしまいます)。

 ですから和 Sn は,
  Sn = 1(n = 1 のとき)
  Sn = (1 + 2 + 3 + … + n) + {1/3 + (1/3)^2 + (1/3)^3 + … + (1/3)^(n - 1)}(それ以外)
となります(これも場合わけがあります)。
 和の記号を用いてあらわすと,
  Sn = 1(n = 1 のとき)
  Sn = 1 + sum[k = 2, n]{k + (1/3)^(k - 1)}
  = sum[k = 1, n]k + sum[k = 1, n - 1](1/3)^k(それ以外)
となります。下については,1 から n までの和の公式と,等比数列の和の公式を使って n の式で表せます。

この回答への補足

それ以外ということはn≧2と言うことですか?

補足日時:2005/06/25 13:20
    • good
    • 0
この回答へのお礼

有難うございました

お礼日時:2005/07/18 16:23

>それ以外ということはn≧2と言うことですか?


そうです.nは1以外の自然数なのでそういうことになります.


1様のご回答にもあったようにこの数列は等差数列と等比数列の和に分解すればいいと思います
で、余談ですが、この分解できるということは何気に行ってる操作かもしれませんが、足し算の結合法則と交換法則が成り立つので、できる操作です.任意有限個の実数の足し算では、結合法則も交換法則も成り立ちますが、可算個では、一般には成り立たない場合が多いです
    • good
    • 0
この回答へのお礼

有難うございました

お礼日時:2005/07/18 16:23

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


おすすめ情報