痔になりやすい生活習慣とは?

今現在統計学の重回帰分析をしているのですが、交差項が意味するところがわからなく、書き込みさせていただきました。

例えば、

賃金=α+β(1)教育年数+β(2)性別ダミー+β(3)教育年数×性別ダミー+u

性別ダミーは男性が1、女性が0です。

男性の教育年数が賃金に与える影響を知りたいときになぜわざわざ交差項を入れないといけないのでしょうか?男性の教育年数が賃金に与える影響なら教育年数の係数であるβ(1)と性別ダミーの係数であるβ(2)を足し合わすだけでいいような気がするのですが。。。

つまり質問は、
1)交差項はなぜわざわざ式に入れる必要があるのか?(この例で説明していただけるとありがたいです)
2)どのようなときに交差項をいれればいいのでしょうか?

よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

同じ教育年数でも、性別によって賃金の変化が異なるという仮説を検証したいからではないでしょうか。

β3が統計学的に有意であれば、その交互作用項に意味が出てきて、性別によって教育年数の効果が異なると言えます。そのようなときは、男女別の回帰式を作成したほうがよいように思います。

交互作用項が必要なのは、要因1(教育年数)の効果が、要因2(性別)によって、異なる場合、グラフにすると直線の傾きが異なって平行でない場合、と思います。
    • good
    • 3

もし交差項がなければ


男性であれば性別ダミーが1なのだから賃金=α+β(1)教育年数+β(2)+u となって男性の教育年数が賃金に与える影響はβ(1)です。
女性であれば性別ダミーが0なのだから賃金=α+β(1)教育年数+u となって女性の教育年数が賃金に与える影響はβ(1)です。

もし交差項があれば
男性であれば性別ダミーが1なのだから賃金=α+β(1)教育年数+β(2)+β(3)教育年数+u となって男性の教育年数が賃金に与える影響はβ(1)+β(3)です。
女性であれば性別ダミーが0なのだから賃金=α+β(1)教育年数+u となって女性の教育年数が賃金に与える影響はβ(1)です。

さて何が変わったでしょうか?
交差項があれば、教育年数の効果に男女格差が存在するか
という問いに答えることができます。(男女格差が存在してもβ(1)+β(3)とβ(1)で違いを表せます)
交差項がなければ、教育年数の効果は男女どちらでもβ(1)としか表現できません。
    • good
    • 12

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q回帰分析の時に対数をとる意味は?

現在、計量経済学の授業で、
回帰分析、最小二乗法について勉強しているのですが、
たまに先生がデータの対数をとって回帰分析をするのですが、
どうして対数をとるのかよくわからないんです。

一応、弾力性を一定とする時や、非線形の関数を
線形にする時に使うらしいことまでは、
わかっているのですが
(でも、それすら怪しいです。間違っていたら訂正してください…)

どうして、対数をとるとそのようなことができるのか
よくわからないんです。

ご存知の方がいらっしゃれば、アドバイスお願いします。
参考書籍・参考サイト等の紹介でもかまいません。

Aベストアンサー

追加の質問の件ですが,ある回帰式について,その説明変数でよいか,その関数形でよいか,ということを統計的に検証する手続きは,特定化の検定(specification test)として確立しています。

よく用いられる例が,Hausman検定やRamseyのRESET検定です。両者は,対立仮説などが異なるので,何を目的とするかで一長一短があり使い分けられます。

ただし,そうした検定はそれなりに難しい(大標本の検定なので,確率極限 plim の概念が必要)ので,学部の4単位くらいの内容ではそこまで至らないでしょう。学部の上級講義か,大学院の修士課程で学ぶ内容ですね。ちゃんとした教科書でも,かなり後の方に説明してある検定です。

ただ,対数をとったモデルと,とらないモデル,どちらの方が望ましいかというだけだったら,上の一般的な定式化の検定よりもずっと簡単な問題で,より簡単なBox-Cox変換で十分です。これだと,入門的な教科書でも手短かに書いてあるでしょう。

なお,その先生の説明を直接聞いたわけではないですが,「対数をとれば,どんな非線形の関係でも,線形回帰式として推定できる」と思われたのなら,誤解を招く説明ですね。

実際,対数をとるだけでは線形にならないような非線形の関係を推定する手法として,非線形最小2乗法とか一般化モーメント法(GMM)とかが用いられているんですからね。これらも,中級以上の教科書なら説明があるでしょう。

追加の質問の件ですが,ある回帰式について,その説明変数でよいか,その関数形でよいか,ということを統計的に検証する手続きは,特定化の検定(specification test)として確立しています。

よく用いられる例が,Hausman検定やRamseyのRESET検定です。両者は,対立仮説などが異なるので,何を目的とするかで一長一短があり使い分けられます。

ただし,そうした検定はそれなりに難しい(大標本の検定なので,確率極限 plim の概念が必要)ので,学部の4単位くらいの内容ではそこまで至らないでしょう。学部の...続きを読む

Q内生変数と外生変数の意味

マクロ経済学を勉強中なのですが、
いきなり説明もなしに内生変数と外生変数という単語が出てきました。

投資需要は単純化のために外生変数とおく
政府支出や税収といった政策変数も外生変数
政策変数は外生変数とおき、内生変数をとき、政策変数の変化が内生変数にどのような変化をもたらすのか

こんな文章がでてきてまったくもって意味がわかりません…
どうかわかりやすく教えてください。

Aベストアンサー

ごく簡単にいえば、外生変数とは経済モデルを作る人が数値を自由に設定できる「前提条件」にあたります。内生変数とは、前提条件の下で作られた経済モデル(連立方程式)を解いて得られる「未知の変数」という意味です。

高校数学でやった、連立方程式でXの値に適当な数字を入れるとYの値がどうなるか、といったことを難しく言っているだけです。マクロ経済学の初歩ということであれば、IS-LMモデルによるマクロ経済モデル等でしょう。一番簡単なモデルはたとえば以下のようなものです。

YD=C+I+G-T:総需要
C=C(Y):消費関数
I=I(r):投資関数
G=一定:政府支出
T=一定:税収
M/P=L(r,Y):通貨需要関数
YS=F(L):総供給関数
YS=YD:需給均衡条件
P=一定:一般物価水準(一定)

C:消費、I:投資、M:マネーサプライ、r:金利、L通貨需要、
L:雇用量

上記の方程式群を、外生変数を右辺に集め、内生変数(未知変数)について解くことになります。上記ではIは金利と所得の関数となっていますが質問のようにIを外生変数にすればさらに簡単になります。経済学的には、外生変数(政策変数)をいろいろ操作することで、Y(所得)がどう変わるのか、ということが一番関心事です。したがって、Gの変更(政府支出の操作=財政政策)やMの変更(マネーサプライの操作=金融政策)の効果を見ていることになります。

ごく簡単にいえば、外生変数とは経済モデルを作る人が数値を自由に設定できる「前提条件」にあたります。内生変数とは、前提条件の下で作られた経済モデル(連立方程式)を解いて得られる「未知の変数」という意味です。

高校数学でやった、連立方程式でXの値に適当な数字を入れるとYの値がどうなるか、といったことを難しく言っているだけです。マクロ経済学の初歩ということであれば、IS-LMモデルによるマクロ経済モデル等でしょう。一番簡単なモデルはたとえば以下のようなものです。

YD=C+...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q対数変換する意味?

私は数学が苦手な文系大学生です。最近「地域分析」という本を読んでいるのですが、たびたび数式を「対数変換すると・・・」と言う風に話が進みます。対数変換をすることの意味がわからないので内容が理解できません。

まず、対数変換とは何なのか?対数変換を行なうと何がどのように変わるのでしょうか?
また、一般的に対数変換とはどのような目的で行なわれるのでしょうか?

ということを文系の学生にわかりやすく教えていただけないでしょうか。
対数変換の内容を理解していないため、質問が的を得ていないかもしれませんが、よろしくお願いします。(また、ここで説明できるような内容でなければ、その旨をお伝えください。)

Aベストアンサー

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

このように表現すると、正の数値で1以下の小数から
万や億などの非常に大きい値に散らばる数値サンプルを
整理したり表現するのに非常に便利です。

また、対数にしてグラフを作ると、上記のように非常に
大きな数(または0.00000・・・・のように非常に小さい数)
を限られた紙面上でプロットする事ができます。
もしそのプロットした結果が直線になった場合、
その直線の傾きでサンプルの近似式を導き出すこともできます。

具体的例を挙げると、身近なものではpH値。
これはある液体の単位量あたりどのくらい水素イオンが
含まれるかを対数表現したものです。
(厳密には、モル濃度で表した水素イオン濃度の逆数の常用対数)

まとめると、対数は小数から数万・億などの広範囲に散らばる
数値を整理するために使われる道具とお考えになられたら
良いと思います。

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

この...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q加重平均と平均の違い

加重平均と平均の違いってなんですか?
値が同じになることが多いような気がするんですけど・・・
わかりやす~い例で教えてください。

Aベストアンサー

例えば,テストをやって,A組の平均点80点,B組70点,C組60点だったとします.
全体の平均は70点!・・・これが単純な平均ですね.
クラスごとの人数が全く同じなら問題ないし,
わずかに違う程度なら誤差も少ないです.

ところが,A組100人,B組50人,C組10人だったら?
これで「平均70点」と言われたら,A組の生徒は文句を言いますよね.
そこで,クラスごとに重みをつけ,
(80×100+70×50+60×10)÷(100+50+10)=75.6
とやって求めるのが「加重平均」です.

Q線形・非線形って何ですか?

既に同じようなテーマで質問が出ておりますが、
再度お聞きしたく質問します。

※既に出ている質問
『質問:線形、非線型ってどういう意味ですか?』
http://oshiete1.goo.ne.jp/kotaeru.php3?q=285400
結局これを読んでもいまいちピンと来なかった...(--;


1.線形と非線形について教えてください。
2.何の為にそのような考え方(分け方)をするのか教えてください。


勝手なお願いですが、以下の点に留意いただけると大変うれしいです。
何せ数学はそんなに得意ではない人間+歳なので...(~~;

・わかりやすく教えてください。(小学生に説明するつもりぐらいだとありがたいです)
・例をあげてください。(こちらも小学生でもわかるような例をいただけると助かります)
・数式はなるべく少なくしてください。

『そんな条件じゃ説明できないよー』という方もいると思いますが、どうぞよろしくお願いいたしますm(__)m

Aベストアンサー

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=A(一定)

という規則が成り立つからです。

xやyの例としては昨日の例で言う例1だとxがガムの個数、yが全体の金額、例2だとxが時間、yが走った距離です。

この規則が何で役に立つかというと、式をちょっと変形すると、

(yの増加量)=A×(xの増加量)・・(1)

ということがわかります。つまり、Aの値さえわかれば、xが増えたときのyの値が容易に推測できるようになるわけです。


ここで「Aの値さえわかれば」と書いていますが、この意味を今から説明します。

自然界の法則を調べるためには何らかの実験を行います。例えば、りんごが木から落ちる運動の測定を行います。
ここから質問者様がイメージできるかわかりませんが、りんごは時間が経つにつれて(下に落ちるにつれて)落下するスピードが速くなるんです。今、実験として、1秒ごとにりんごのスピードを測定したとします。そしてその結果をグラフにプロットしていくと、直線になることがわかります。(ここがわかりにくいかもしれませんが、実際に実験を行うとそのようになるのです)

数学の問題のように初めから「時速100kmで走る」とか「1個100円のガム」とかいうことが与えられていれば直線になることはすぐにわかります。
しかし、自然界の法則はそうもうまくいきません。つまり、実験を行ってその結果をプロットした結果が直線状になっていたときに初めて「何らかの法則があるのではないか」ということがわかり、上で書いた「Aの値さえわかれば」の「A」の値がプロットが直線状になった結果、初めてわかるのです。

そして、プロットが直線状になっているということは、永遠にそうなることが予想されます。つまり、今現在はりんごが木から落ちたときしか実験できませんが、その結果を用いて、もしりんごが雲の上から落としたときに地面ではどのくらいのスピードになるかが推測できるようになるわけです。ここで、このことがなぜ推測できるようになるかというと、(1)で書いた関係式があるからです。このように「なんらかの法則があることが推測でき、それを用いて別の事象が予言できるようになる」ことが「線形」が重要だと考えられる理由です。

しかし、実際に飛行機に乗って雲の上からりんごを落としたらここで推測した値にはならないのです。スカイダイビングを想像するとわかると思いますが、最初はどんどんスピードが上がっていきますが、ある程度でスピードは変わらなくなります。(ずっとスピードが増え続けたら、たぶんあんなに空中で動く余裕はないでしょうか??)つまり、「線形から外れる」のです。

では、なぜスピードが変わらなくなるかというと、お分かりになると思いますが、空気抵抗があるからなんですね。(これが昨日「世の中そううまくはいかない」と書いた理由です)つまり、初めは「線形」かと思われたりんごを落とすという実験は実際には「非線形」なんです。非線形のときは(1)の関係式が成り立たないので、線形のときほど容易には現象の予測ができないことがわかると思います。


では、非線形だと、全てのことにおいて現象の予測が難しいのでしょうか?実はそうでもありません。例えば、logは非線形だということをNo.5さんが書かれていますが、「片対数グラフ」というちょっと特殊な形のグラフを用いるとlogや指数関数のグラフも直線になるんです。つまり、普通のグラフでプロットしたときに「非線形」になるため一見何の法則もないように見えがちな実験結果が「片対数グラフ」を用いると、プロット結果が「線形」になってlogや指数関数の性質を持つことが容易にわかり、それを用いて現象の予測を行うことが(もちろん単なる線形よりは難しいですが)できるようになるわけです。


これが私の「線形」「非線形」の理解です。つまり、

1) 線形の結果の場合は同様の他の事象の推測が容易
2) 非線形の場合は同様の他の事象の推測が困難
3) しかし、一見非線形に見えるものも特殊な見方をすると線形になることがあり、その場合は事象の推測が容易である

このことからいろいろな実験結果は「なるべく線形にならないか」ということを目標に頑張ります。しかし、実際には先ほどの空気抵抗の例のように、どうしても線形にはならない事象の方が世の中多いんです。(つまり、非線形のものが多いんです)

わかりやすいかどうかよくわかりませんが、これが「線形」「非線形」を分ける理由だと思っています。

やっぱり、「線形の方がなんとなくわかりやすい」くらいの理解の方がよかったですかね(^^;;

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=...続きを読む

Q標準化係数と非標準化係数

お世話になります7772です。重回帰分析での標準化係数、非標準化係数の意味合いは、標準化係数が、ある変数が他の変数に比べてどのように影響しているかを比べるもので、非標準化係数が、他の変数の影響を一定にして、一つの変数にのみ絞ったその変数の全体への影響を示したものと認識しています。
 私が疑問に思うのは、これらの係数が負の値をとるときです。そのときは正の値のものよりも影響しないということでしょうか?具体的には、標準化係数が0.2のものと-3.3のものでは、0.2のほうがより影響していると言うことなのでしょうか?
 それとも、判断は絶対値で行い、上のような場合、-3.3のほうが影響しているけれど、それは変数が増えれば全体が増えるのではなく、変数が増えると全体が減る。の用に影響していると言う意味合いなのでしょうか?

Aベストアンサー

こんにちは。SPSSの用語は独特な表現のものが多いので注意しましょう。

最初に「標準化係数」と「非標準化係数」の認識が間違っている点を指摘します。
一般的な用語を使えば,回帰係数と偏回帰係数,そして標準偏回帰係数というものがあります。

・ある変数が他の変数に比べてどのように影響しているかを比べるもの → これは「回帰係数」のことであり,重回帰分析では表示されません。

・他の変数の影響を一定にして、一つの変数にのみ絞ったその変数の全体への影響を示したもの → 「偏回帰係数」のことです(SPSSの用語で言えば「非標準化係数」)。重回帰分析で表示されるのはこの「偏回帰係数」系の指標です。

それでは,残った「標準化係数」とは何かというと,一般用語では「標準偏回帰係数(β)」であり,標準化,すなわち「偏回帰係数」を平均0,分散1に標準化したものです。通常は-1≦β≦+1の範囲を取るので,絶対値「1」に近いほど影響力がある(「0」に近いほど影響力がない)と解釈されるとよいでしょう。

係数の符号の解釈についてです。一般に係数は「正負の方向性」と「絶対値」の二つの観点から解釈を行います。絶対値が大きいほど,影響力が強いことを意味します。「正負の方向性」とは,その影響が「+」に影響を与えているか,「-」に影響を与えているかを意味します。

> 具体的には、標準化係数が0.2のものと-3.3のものでは、
> 0.2のほうがより影響していると言うことなのでしょうか?

【標準化】係数で「-3.3」になったのですかっ!?
一般には「±1」を超えることは珍しいのですが,これはかなり超えています。何か特別の事情があるかもしれませんね……

こんにちは。SPSSの用語は独特な表現のものが多いので注意しましょう。

最初に「標準化係数」と「非標準化係数」の認識が間違っている点を指摘します。
一般的な用語を使えば,回帰係数と偏回帰係数,そして標準偏回帰係数というものがあります。

・ある変数が他の変数に比べてどのように影響しているかを比べるもの → これは「回帰係数」のことであり,重回帰分析では表示されません。

・他の変数の影響を一定にして、一つの変数にのみ絞ったその変数の全体への影響を示したもの → 「偏回帰係数」...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング