a,b,cを奇数とし、xについての二次方程式ax^2+bx+c=0に関して、
(1)この二次方程式が有理数の解q/pをもつならば、pとqはともに奇数であることを証明せよ。ただしq/pは既約分数。 【この問題は解けました。】
(2)この二次方程式が有理数の解をもたないことを(1)を用いて照明せよ。
上の問題はある大学の過去に出題された問題なのですが、(1)でこの式はpとqがともに奇数である有理数の解をもつと証明されているのに、何故(2)をする必要があるのですか?
する必要が無いと思うのですが。
もしよければ、証明法を添えて、教えてもらえれば幸いです。
No.2ベストアンサー
- 回答日時:
(1)が成り立つと仮定すると、(2)は、xにq/pを代入して、分母を払い、aq^2+bpq+cp^2=0となります。
ところが、このa,b,c,p,qはすべて奇数なので、左辺の3項はともに奇数となり、奇数を3つ加えても偶数の0には成りません。よって、(1)の仮定が間違っていて、この2次方程式は有理数の解を持たないと言うことを、出題者は証明してほしいのでしょう。お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 政治 そもそも何故、男性天皇と女性天皇を両立してはいけないのですか? 11 2022/08/22 09:53
- 数学 数学の問題の解き方を教えてください! 3 2022/11/02 17:32
- 数学 高校数学I 2次関数 2つの2次方程式の共通の実数解の問題についての質問です。以下の写真を見てもらえ 4 2022/05/13 11:47
- 数学 分数方程式を解く際にグラフを描く必要はあるのですか? 2x-1/(x-1)=x+1 のような分数方程 2 2022/12/17 16:05
- 数学 多項式の性質と無理数・有理数 2 2022/06/21 06:50
- 高校 方程式の証明 5 2022/05/12 09:29
- 大学受験 【急募】國學院大學数学について質問です。 僕の受ける方式は下線の引いた所(B日程)なのですが、結果の 2 2023/02/20 19:34
- 数学 2次方程式の「(x-3)^2=4」を解くとき、 そのまま解くことも可能ですが A=x-3と置いて、A 3 2023/01/27 18:20
- 大学受験 お急ぎの質問です。 現在高3受験生です。次の金曜日に明治大学総合数理学部(現象数理科)の学部別試験が 3 2023/02/13 23:38
- 数学 この問題の解説ではいきなりmが正か負かを場合分けして解いているのですが、最初に2次方程式 mx^2- 5 2022/09/11 19:18
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
素数の性質
-
数学の「証明」のときなどの接...
-
(4^n)-1が3の倍数であることの...
-
喪中はがきについて~娘の夫が...
-
中学校の2年生に仮定と結論を...
-
非該当証明書と該非判定書とい...
-
よって・ゆえに・したがって・∴...
-
素数の積に1を加算すると素数で...
-
「証明証」と「証明書」はどう...
-
数学の証明問題で、「証明終了」...
-
無理数って二乗しても有理数に...
-
lim(n→∞)an=-∞ の時、lim(n→∞)...
-
中間値の定理について
-
rankに関する証明問題です。
-
婿養子です、妻と離婚して妻の...
-
夫が亡くなった後の義理家族と...
-
血がつながっていない父親と結...
-
『弧は弦より長し』
-
大阪大入試問題 空間図形
-
rot rotA=grad divA-∇^2Aの証明...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
素数の積に1を加算すると素数で...
-
素数の性質
-
数学の「証明」のときなどの接...
-
数学の証明問題で、「証明終了」...
-
証明終了の記号。
-
(4^n)-1が3の倍数であることの...
-
3,4,7,8を使って10を作る
-
よって・ゆえに・したがって・∴...
-
親の再婚相手との問題です。私...
-
「証明証」と「証明書」はどう...
-
47歳、母親の再婚を子供の立場...
-
正解が一つとは限らない数学の...
-
兄弟の子どもの養子縁組は可能...
-
婿養子です、妻と離婚して妻の...
-
夫が亡くなった後の義理家族と...
-
婿養子に入ったのに出て行けと...
-
喪中はがきについて~娘の夫が...
-
無理数って二乗しても有理数に...
-
実息とは?
-
直角三角形の性質
おすすめ情報