人気マンガがだれでも無料♪電子コミック読み放題!!

L字の等辺山形鋼の断面二次モーメントの求め方を調べています。

鋼材諸元表を観ると、例えばL75×75×9の場合は64.4cm^4と掲載されていますが、この求め方が分かりません。
等辺山形鋼の場合、端と90°の内側に径(L75×9なら端のr=6、90°内側のr=8.5)がありますが、この径はないものとしてで構いません。

よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

定形製品は表を使っています。


基本的に断面二次モーメント=断面積×断面二次半径重心の位置寸法ですから
I=a×(ix)2=
a :断面積
ix:断面二次半径

断面二次モーメント=12.7×2.25×2.25でしょうか。

参考URL:http://www.tokyosteel.co.jp/product/catalog/angl …
    • good
    • 0
この回答へのお礼

ありがとうございます!
計算式と鋼材緒元表、活用させていただきます。

お礼日時:2006/02/05 23:53

#1の回答者です。


#2の方の計算式で理解できたでしょうか?
ixは全体の重心位置から、それぞれの重心位置までの距離ですので
ご注意下さい。
    • good
    • 0
この回答へのお礼

断面二次半径の定義もよくわからないところでした。
解説、ありがとうございました!

お礼日時:2006/02/05 23:57

長方形の断面二次モーメントの算出のしかたが判れば、L型を分割することで計算できると思います。


合成になりますので、重心位置からの算出も必要です。
    • good
    • 1
この回答へのお礼

ありがとうございます。
重心からの位置の算出が必要になるんですね。
重心位置からの算出方法がわからないので、具体的な計算方法を教えていただけると大変助かります。
よろしくお願いします。

お礼日時:2006/02/05 00:36

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q山形鋼の強度

SS400の山形鋼(L=100×100×10)の真ん中に重りをのせる場合、何kgまで耐えられるか教えてください。耐えられるというのは破断もしくはひずみが起こる場合のどちらでも構いません。
できれば計算方法を示していただけると助かります。

Aベストアンサー

スパンL=1500の中央に集中荷重Pを受ける単純ばりにおいて、はり部材L100×100×10が、SS400の許容曲げ応力度fb=156N/mm2となる集中荷重Pの値を計算するので参考にして下さい。ただし、はり部材の自重は無視します。

曲げ応力度σ=M/Zの式に、σ=156N/mm2、最大曲げモーメントM=PL/4=P×1500/4=375P[N・mm]、断面係数Z=24 400[mm^3を]代入して、
156=375P/24 400
∴P=10150 N

10150N(ニュートン)をkgに換算するには、9.8で割って、1035kgと計算されます。
山形鋼の自重による応力度を無視しているので、集中荷重P=1000kgまでOKではないかと考えられます。

【補足】
ちなみに、自重による曲げ応力度を計算すると、
自重(等分布荷重)ω=14.9kg/m=14.9×9.8/1000=0.146N/mm
M=ωL^2/8=0.146×1500^2/8=41063N・mm
σ=M/Z=41063/24400=1.7N/mm2

集中P=1000kg=9800Nが作用したときの曲げ応力度
M=PL/4=9800×1500/4=3675000
σ=M/Z=3675000/24400=150.6N/mm2

合計σ=1.7+150.6=152.3≦許容曲げ応力度fb=156N/mm2

山型鋼の断面性能については、JFEスチールの製品情報を参照しました。
http://www.jfe-bs.co.jp/product/keiko/k002ab.pdf

また、鋼材SS400の許容応力度については、「計算の基本から学ぶ 建築構造力学」(著者:上田耕作、オーム社)の107ページ許容応力度表から引用しました。

スパンL=1500の中央に集中荷重Pを受ける単純ばりにおいて、はり部材L100×100×10が、SS400の許容曲げ応力度fb=156N/mm2となる集中荷重Pの値を計算するので参考にして下さい。ただし、はり部材の自重は無視します。

曲げ応力度σ=M/Zの式に、σ=156N/mm2、最大曲げモーメントM=PL/4=P×1500/4=375P[N・mm]、断面係数Z=24 400[mm^3を]代入して、
156=375P/24 400
∴P=10150 N

10150N(ニュートン)をkgに換算...続きを読む

Q断面2次モーメントと断面係数の違い

断面2次モーメントと断面係数の違いなんですが

断面2次モーメントとは、部材の変形のしにくさを表して、断面2次モーメントが大きいと、たわみにくく座屈しにくいことを示す。
それに対して断面係数は、部材の曲げ強さを表し、断面係数が大きいと曲げに対して強いことを示す。

なんですが、思うにたわみにくさと曲げ強さはイコールではないのですか?

断面2次モーメントが大きいと曲げに対しても強い。
断面係数が大きくてもたわみににくい。

とはかならずしもならないのでしょうか?
いまいち区別してる意味がよくわかりません
ご教授くださいませんか

Aベストアンサー

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超えた時に破壊する。

この時,(A)部分の負担する力(T)が同じならば,(A)の面積(=)が大きい程破壊しにくい。又,中心点からの距離(J)が大きいと破壊しにくい。簡単に言ってしまえば,この時の(A)の面積と距離(J)を掛けたものが,曲げ外力に抵抗する抵抗曲げ強度を決めるための係数,即ち,断面係数(Z)です。

つまり,曲げ強度に影響を与える断面係数は,材料の材質,強度,変形などに関係なく,形状と距離だけで決まります。

一方,(A)部分に作用した引張力(T)は,(A)部分を伸ばす,即ち,変形させます。この時の変形量は,フックの法則によって,形状,距離に加えてヤング係数によって決まります。
この時,変形量は断面の外縁が最も大きく,中心位置に近いほど小さくなります。この時の形状の変化率を表すのが断面2次モーメントです。
(A)部分が引張によって伸び,(B)部分が圧縮による縮んだ結果,この材料はδ方向に変形します。この変形量がたわみです。

つまり,断面係数と断面2次モーメントは,公式は似ていますが,断面係数は曲げ抵抗強度に関する量であり,断面2次モーメントは変形率に関する量であって,お互いに全く関連性のない形状に関する係数です。

// たわむ=まがる
は,変形に関するもので,強度とは関係有りませんので,断面2次モーメントにだけ関係する語句です。(たくさん曲がっても=たわみが大きくても,破壊するとは限らない。)

これを踏まえて,

// たとえば
// I>Zの場合だと割り箸のようにたわみにくいけど折れやすく
// I<Zの場合だと釣竿のようにたわみやすいけど折れにくい
// とかだとイメージできるんですが

というのは,上記の断面係数と断面2次モーメントの理屈から言うと,正解とは言えませんが,結果的に,強度とたわみの関係を言い表している,とっても素敵な例として有効だと思います。(今後,私にも使わせてください。)

この例の(I)を,曲げ剛性(EI)と言い換えれば,強度と変形の関係を表す例として完璧かもしれません。つまり,変形=たわみの話をする時,(I)が単独で使われることはなく,常に一組の概念として,曲げ剛性(K=EI)として使われる,と言うことです。

これらの断面に関する諸量は,構造力学や材料力学において,数学的に積分を用いて説明され,イメージとして説明されることはほとんど有りません。ですから,実際に計算する事は出来ても,どのようなイメージかと聞かれると答えに窮して仕舞うのも仕方ない事だと思います。私もその一人ですが・・・

どちらにしても,断面係数と断面2次モーメントの関連性について,1級建築士でもイメージする事が難しい概念ですから,イメージ化して素人に説明するのは,多少無理があると思います。

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超え...続きを読む

Qアングルの許容圧縮応力度の計算

アングルの許容圧縮応力度の計算、算出方法を教えてください

Aベストアンサー

アングルとは山形鋼のことを指していると思いますが、鋼材の許容圧縮応力度は、座屈がからむので、複雑です。

建築用鋼材の場合
細長比λ、限界細長比Λ、F値をFとすると
λ≦Λのとき、許容圧縮応力度=[1-0.4×(λ/Λ)^2]×F
λ>Λのろき、許容圧縮応力度=0.277×F/(λ/Λ)^2

但し限界細長比Λ=√[π^2×E/(0.6×F)]
E:ヤング係数

細長比λ=L/i
L:材長
i:断面2次半径

参考 日本建築学会「構造用教材2」 p63

Q鋼板の曲げ応力について

初心者です

壁に厚さ32mm 幅150mm 長さ515 の鋼板があります
壁に片方を付け、反対側に10knの力をかけるとゆう作業なのですが、
10knでもつのか、またどの位の力までもつのか知りたいのですが算定のしかたが分かりません

宜しくお願いします

Aベストアンサー

図のような荷重状態を想定しました。
また、鋼材の材質が指定されてないので、一般的なSS400(一般構造用鋼材)を想定します。
SS400の許容曲げ応力度fb=156N/mm2、また、許容せん断力fs=90.4N/mm2とします。
なお、計算はNとmmで進めます。
(1)曲げに対する検討
最大曲げモーメントM=PL=10,000×515=5,150,000N・mm
断面係数Z=bh2/6=150×32×32/6=25,600mm3
曲げ応力度σb=M/Z=5,150,000/25,600=201N/mm2>fb=156N/mm2
∴許容曲げ応力度を超えているので安全とはいえません。(もたないです)
では、何kNまでならOKかと逆算すると,
P×515/25,600=156
P=7,754N
∴7.7kNまでなら計算上はOKとなります。
このとき,せん断に対しては,
せん断応力度τ=P/A=7,700/150×32=1.6N/mm2≦fs=90.4N/mm2
∴せん断に対しても安全といえます。
(注)SS400の材料自体の計算例を示しましたが、これ以上に壁に対する固定方法のチェックもお忘れなく。

参考文献:計算の基本から学ぶ 建築構造力学 上田耕作 オーム社

図のような荷重状態を想定しました。
また、鋼材の材質が指定されてないので、一般的なSS400(一般構造用鋼材)を想定します。
SS400の許容曲げ応力度fb=156N/mm2、また、許容せん断力fs=90.4N/mm2とします。
なお、計算はNとmmで進めます。
(1)曲げに対する検討
最大曲げモーメントM=PL=10,000×515=5,150,000N・mm
断面係数Z=bh2/6=150×32×32/6=25,600mm3
曲げ応力度σb=M/Z=5,150,000/25,60...続きを読む

Qねじり剛性係数と断面二次モーメントの関係

ねじり剛性係数と断面二次モーメントの関係
縦横XYの断面二次モーメント値からねじり剛性係数、またはそれに相等するねじり変形しにくさを表す数値を出す方法を探しています。

いつくかある断面形状のねじり強さの比率を知りたいのです。材質は考慮しません。
単純にXYの断面二次モーメント値をかけ算して、その値の比率で判断していいものでしょうか?

具体的には乗り物のフレームを設計して、すでに一度専用のパイプを試作しました。
予想以上に強かったので断面を小さくして軽量化を図りたいのですが、一体どれくらい落としてよいものか判断がつかないのです。
結局は当てずっぽうなのですが、最初のものに比較して何%ダウンという指標があれば有力な判断材料となります。
宜しくお願いいたします。

Aベストアンサー

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断面の両端面が変形後も平面となるように拘束されている場合(全周溶接などによって)には、Jはやはり式(2)で定義できます。
今の質問の構造の場合、フレームと書いていらっしゃるので、棒の両端面はしっかりと拘束されていると思われ、式(2)が適用できます。

これがあなたの質問に対する直接の回答となります。

以上のほか、棒の断面の両端面が変形後も平面となるように拘束されていない場合のケースについて補足説明しておきます。
棒を両手で握って捩ると、断面が円でない場合には、両端面が変形後は軸方向に波打った形状となって、平面とはなりません。(この現象が顕著に現れる例としては、紙を丸めて筒状にして捩った場合があげられます。)
このような捩りの状態を「サン・ブナンの捩り」と呼びます。
断面が長方形の棒を、両端を溶接せず、補助金具などを用いて、他の部材にねじ止めしているような場合には、このサン・ブナンの捩りが発生しやすくなります。
この場合の注意としては、
J<<Ip ・・・(3)
となってしまうことです。
この場合の取り扱い方については、一般の材料力学の本はごまかしているのが普通です。
あなたの場合、「予想以上に強かった」と書かれているので、サン・ブナンの捩りの状態ではなく、両端面がガッシリと他部材に溶接されているケースと推測しています。

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断...続きを読む

Qボルトの許容せん断応力について

ボルトの許容せん断応力の求めかたを教えてください。
材料はSS400
ボルトはM20 
です。
計算式だけでもかまいませんのでよろしくおねがいします。

Aベストアンサー

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛ければ、許容せん断力(A×f=2.198ton)が求まります。

なお、この値は長期荷重に対する許容値で、風荷重等の短期荷重に対しては1.5倍
することができます。

こんなんでどうでしょうか?

ちなみに、

http://www.kawasaki-steel.co.jp/binran/index.html

にその他いろいろデータが載ってます。

参考URL:http://www.kawasaki-steel.co.jp/binran/index.html

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛け...続きを読む

Q比重の単位って?もうわけわからない・・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??なぜ、この場合、厚さだけはmmの単位で、縦と横はmでの計算をするのでしょうか?

比重ってのは単位はどれに合わせてすればいいのでしょうか?

そして円筒の場合はどのように計算するのでしょうか?
まず、円の面積を求めて、それに長さを掛けるのですよね?
これは円の面積の単位はメートルにして、長さはミリで計算するのでしょうか??
わけわからない質問ですみません・・・。もうさっぱりわけがわからなくなってしまって・・。うんざりせずに、解かりやすく、教えてくださる方いましたらすみませんが教えて下さい・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??...続きを読む

Aベストアンサー

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g/cm3)=471g=0.471kg
と計算します(cmとgで計算しているのでCGS単位系と呼びます)

円筒の場合も同様に
体積×密度で求めます
円筒の体積=底面積(円の面積半径×半径×円周率)×高さ
です

比重=密度で計算するならば、水が1gになる体積1cm3を利用するために長さの単位をcmに直して計算してください
計算結果はgで出るのでこれをkgに直してください

最初からkgで出したい時は
水の密度=1000(kg/m3)
(水1m3の重さ=100cm×100cm×100cm×1g=1000000g=1000kg)
を利用して
目的の物質の密度=1000×比重(kg/m3)
でも計算できます
(このようにm kgを使って計算するのがSI単位系です)

0.1×0.1×6×7.85は#4の方がおっしゃるとおり
0.1×0.1×0.006×1000×7.85の0.006×1000だけ先に計算したのだと思います

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g...続きを読む

Q最大曲げモーメント公式 Mmax=wl²/8 

(左支持荷重×距離)-(左半分荷重×左半分荷重重心)
(P/2×L/2)-(P/2×L/4)
=PL/4-PL/8
=PL/8

どうして(左支持荷重×距離)から(左半分荷重×左半分荷重重心)を引くのか分かりません。教えてください。

Aベストアンサー

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問が生じるのだと思います。

最大曲げモーメントを求めるには、図1の等分布荷重を作用している状態でスパン中央で切断して考えます。これが図3となり等分布荷重が作用している状態となります。

切断した部分の等分布荷重wを集中荷重に置き換えると、図4のようにP/2となり、スパンの半分の半分の位置、つまりL/4の位置に作用することとなります。ここで、スパン中央を中心としてモーメントのつりあいを考えると、質問者さんの式が導き出されます。

Mmax=P/2×L/2-P/2×L/4
=PL/4-PL/8
=PL/8

なお、P=wLより、最大曲げモーメントの公式 Mmax=wL^2/8 となります。

「計算の基本から学ぶ建築構造力学」(著者 上田耕作、オーム社)、
「ズバッと解ける!建築構造力学問題集220」(著者 上田耕作、オーム社)を参考にしました。

参考URL:http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-20856-0

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問...続きを読む

Q両端固定はりのせん断力と曲げモーメント

図のような固定はりのせん断力、曲げモーメントを求め、たわみ角、たわみ、SFD、BMDを求めたいです。
重ね合わせ法で解こうと思いましたが、荷重がどちらか片方だけ作用している時のせん断力、曲げモーメントをどのように考えるのかわかりません。

Aベストアンサー

 C点またはD点の荷重効果を別々に計算して足せば良い、とわかっているなら、次のURLで答えは出ます(^^)。

  http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari-04-01.html

 以下は、どうしてもという事であれば、という内容です(^^;)。


 構造力学の一般的手順では、最初に全体系の力の釣り合いから反力を求め、後は反力から部材力をたどって行って、SFDやBMDを計算します。しかし両端固定梁の場合、力の釣り合いだけからは反力を全部求めきれない。問題図で水平力が無いのは明らかですが固定端なので、左右でそれぞれモーメント反力と鉛直反力が現れ、全部で4個になる。ところが力の釣り合い方程式は、水平力が片付いているので実質2本しかない。未知数が2個余る。こんな状況だと思います。

 余り2個の反力を計算する代表的な方法は、4つあります。
  1)曲げを受ける梁の微分方程式
  2)カスティアノの定理
  3)仮想働の原理
  4)たわみ角法

 4)は応用性に乏しいので、ここでは省略します。それでまず1)です。


1))曲げを受ける梁の微分方程式
 曲げを受ける梁の微分方程式は、

  EI・(d^4w/dx^4)=q(x)    (1)

です。xはたいてい梁の左端を0にしたりします。Eはヤング率,Iは断面2次モーメントです。q(x)は横方向の分布中間荷重です。ここでは問題図のC点の荷重についてのみ考えます。そうするとAC間,CB間には中間荷重がないので(q(x)=0)、(1)からそれぞれ、

  w1(x)=A1・x^3+B1・x^2+C1・x+D1
  w2(x)=A2・x^3+B2・x^2+C2・x+D2

が得られます。w1はAC間の梁の鉛直方向の変位曲線,w2はCB間の変位曲線を表し、A1,B1,C1,D1とA2,B2,C2,D2は、それぞれに対する積分定数で未知です(つまりこれら8個が未知数です)。

 たわみ角はdw/dxで、BMDはEI・d^2w/dx^2で、SFDは-EI・d^3w/dx^3では求められるので、8個が未知数に対する条件は、

  左端固定条件
   w1(0)=0                     :Aで変位0
   dw1/dx(0)=0                  :Aでたわみ角0

  C点での接続条件
   w1(L/3)=w2(0)                 :Cで変位連続
   dw1/dx(L/3)=dw1/dx(0)           :Cでたわみ角連続
   d^2w1/dx(L/3)=d^2w2/dx(0)         :Cで曲げモーメント連続
   -d^3w1/dx(L/3)-W=-d^3w2/dx(0)   :Cでのせん断力の釣り合い

  右端固定条件
   w2(2L/3)=0                   :Bで変位0
   dw2/dx(2L/3)=0                :Bでたわみ角0

と8個になり、頑張って解けば、A1,B1,C1,D1とA2,B2,C2,D2は全部求まります。求まれば、BMDはEI・d^2w/dx^2で,SFDは-EI・d^3w/dx^3で、・・・です(^^;)。


 次に2)は後にして3)仮想働の原理ですが、この辺で力突きました。

 明日また回答するかも知れませんが、1)~4)のいずれを使おうと、計算は大変です。最初のURLをお奨めします(^^;)。

 C点またはD点の荷重効果を別々に計算して足せば良い、とわかっているなら、次のURLで答えは出ます(^^)。

  http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari-04-01.html

 以下は、どうしてもという事であれば、という内容です(^^;)。


 構造力学の一般的手順では、最初に全体系の力の釣り合いから反力を求め、後は反力から部材力をたどって行って、SFDやBMDを計算します。しかし両端固定梁の場合、力の釣り合いだけからは反力を全部求めきれない。問題図で水...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング