
ここ一年間ぐらいずっと謎のままなのですが、いまさら大学の先生に聞くにも聞けず困っています。
話は偏微分方程式の解き方でよくででくる、変数分離についてです。多くの説明は、私の認識では、
変数分離の形(例えばA(x)B(y)C(z))の解を仮定して、偏微分方程式に代入して上手く各因子(上の例だとA,B,C)について常微分方程式がでてきたら、その解たちを掛け合わせたものはもとの偏微分方程式の解である。一般解はその積のすべてについて線形結合を取れば得られる。
といったものです。(あってますよねえ)
私がいつも悩んでいるのは最後の一文です。なぜ変数分離形の解の線形結合をとれば一般解になるのでしょうか?
数学記号の表記がしにくかったら、TeXの表記でかまいませんのでよろしくお願いします。
No.2ベストアンサー
- 回答日時:
想像です。
変数分離できるということは、
各変数ごとに方程式を保つような変換がある
(方程式と解に同時に変換を施すときどの解もそれを満たす)
ということだと思います。
したがって、変数分離できない解があるとすると
変数を独立に変換できない(※)のでそういう解はない
ということになって、変数分離により求められた解で
全てが尽くされることになるのではないでしょうか?
※はたとえば解f(x、y)があると局所的に
yに対するfの変化の様子がわかれば
xが決まるのでxを変換するときにyも変換しなければいけない
というようなことを示せばよいのかなと思います。
No.3
- 回答日時:
元の微分方程式を
D(x,y,z)f(x,y,z)=λf(x,y,z)
という固有方程式として考えます。
変数分離とは
D(x,y,z)=L(x)M(y)N(z)
f(x,y,z)=l(x)m(y)n(z)
として、
L(x)A(x)=α_lA_l(x)
M(y)B(y)=β_mB_m(y)
N(z)C(z)=γ_nC_n(z)
として解けることをいいます。
ここで、それぞれの固有方程式は、複数の固有値と
固有関数、一番上の式だと、α_lとA_l(x)を
持ちます。
これを元に戻すと、
L(x)M(y)N(z)A(x)B(y)C(z)
=Σ(l,m,n)α_lβ_mγ_nA_l(x)B_m(y)C_n(z)
(ただしΣ(l,m,n)は、l,m,nについての和を表す。)
となって、
D(x,y,z)f(x,y,z)=
Σ(l,m,n)α_lβ_mγ_nA_l(x)B_m(y)C_n(z)
となります。
「一般解はその積のすべてについての線形結合をとれば
得られる。」
というのを、
「一般解は、その固有関数の積のすべてについての
線形結合をとれば得られる。」
とすれば、理解頂けますか?
No.1
- 回答日時:
数学の微分方程式の解についての定理に
「解の一意性定理」というのがあります。
数学のちゃんとした微分方程式の本にはのっているはずです。
その定理によれば、微分方程式の一般解が一つ求まれば、
それが唯一の解であることを保証します。
だからどのような方法で、一般解を導いても、その導いた
一般解は、唯一の一般解であることが、保証されています。
n階微分方程式の一般解は、n個の未定定数を含み、
微分方程式を満たすものです。
これが、一つ見つかれば、それが唯一の解である。
だから、変数分離でもなんでも、都合のよい方法で
解けば良いのです。
経験的に変数分離が解けるということです。
大分昔に勉強したことなので、
「解の一意性定理」の厳密なことは、忘れてしまいましたが、
理解の方向性としては、これでいいと思っています。
ありがとうございます。
質問で強調してなかったのがいけなかったと思うのですが、私が言っているのは偏微分方程式についてです。お答えから察するに常微分方程式をイメージされているようなので・・・。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 量子力学 球面調和関数 導出 方位角成分 微分方程式の解 2 2022/07/02 13:40
- 物理学 微分方程式の物理現象への適用について 3 2023/05/14 12:22
- 数学 数学の教科書について 3 2023/01/29 21:10
- 数学 常微分方程式論と偏微分方程式論 2 2022/04/03 22:35
- 数学 たとえば、先生が " 1 微分積分 2 線形代数 3 集合と位相 4 解析 5 情報数学 6 微分方 2 2022/07/07 10:43
- 数学 2階非線形微分方程式の右辺が{e^(-x)}√xになってしまったのですが特殊解はどのように見つけたら 1 2022/11/14 22:04
- 高校 対数方程式につきまして 4 2022/05/05 07:55
- 数学 工学部の数学の勉強の仕方 新しい理論と問題を解くこと 4 2022/04/30 13:16
- 数学 【完全微分方程式⠀】 分数で分母が0になり定義できない場合、分母を仮にtと置いてそれを極限t→0とし 1 2022/05/06 14:43
- 数学 微分方程式の非線形2階微分方程式が解けないので教えてください!特殊解とその見つけ方だけでもお願いしま 4 2022/11/21 23:35
今、見られている記事はコレ!
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
-
ピンとくる人とこない人の違いは?直感を鍛える方法を心理コンサルタントに聞いた!
根拠はないがなんとなくそう感じる……。そんな「直感がした」という経験がある人は少なくないだろう。ただ直感は目には見えず、具体的な説明が難しいこともあるため、その正体は理解しにくい。「教えて!goo」にも「...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
慣性モーメント
-
なぜ写真①の場合と②の場合で自...
-
物理
-
FEMのモード法と直接法の違...
-
行列の問題です。 何度やっても...
-
配向テンソルについて
-
大学4年生です。 卒業に124単位...
-
大学のゼミの1回目のの講義で5...
-
卒論提出せずに卒業してしまい...
-
大学院進学祝いは必要でしょうか?
-
研究生の履歴書の書き方
-
送付状の書き方:お世話になっ...
-
大学のゼミの発表が嫌です。 そ...
-
【卒論】大学生が書いた卒業論...
-
大学生です。7000~10000字のレ...
-
学位論文手渡し時の添え状
-
ゼミ必修ではないのでゼミを辞...
-
素朴な疑問ですがどうして卒論...
-
卒業論文の単位は卒業論文を大...
-
学会発表経験なしについて(理...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報