[PR]ネットとスマホ OCNでまとめておトク!

ポリエチレンの結晶化度をDSC測定で求める場合,ΔHを100%結晶状態のポリエチレンのΔHで割るかと思います.この100%結晶状態のΔHの値はポリエチレンの分子量やその他の違いによって変わるものなのでしょうか?例えば100%結晶状態のLDPEのΔHと同じく100%結晶状態のUHMWPEのΔHは異なるでしょうか?できれば理由もあわせてご教授いただけると助かります.

このQ&Aに関連する最新のQ&A

A 回答 (2件)

私は高分子結晶の専門家でないのですが,わかる範囲で・・・


結晶性高分子の結晶部分が示す現実の融点は,その分子構造,分子量,熱履歴などによって大きく左右されます。
文献に載っているいわゆるΔHはたいてい,平衡融点を示す結晶の融解熱を指すもので,いくつかの条件を振って測定した結果を外挿して得られる値だと思います。理想的な状態です。
それに対して実際のDSCで得られる融点は,たとえ昇温速度を非常に遅くして冷結晶化過程を十分に通過させたとしても,できあがる結晶は不完全です。
冷結晶化のあとに測定される融点は平衡融点よりも低くなり(つまりΔHが小さく,ときには1/3にもなります),上記の文献値ΔHが当てはまらなくなります。
ですので,DSCの融解面積から文献値ΔHを用いて結晶化度を出すのは,それだけの大きな誤差を含む可能性があると考えるべきです。
やはり広角X線回折測定の方がよいと思います。
しかしDSCでももっと良い方法があるのかも知れませんが,室温付近の物性を調べるのに熱履歴を与えてしまうDSCを使うのはどうでしょうね?
また,このあたりについては「熱分析」関連の書籍が参考になるとか。
    • good
    • 0

結晶性のポリマーは、そもそも100%結晶状態にはなりません。


(すべてのポリマーにおいて)
結晶部と非晶部からなります。
最も単純な骨格といえる直鎖状ポリエチレン(HDPE)においても、
結晶化度はせいぜい、60%?くらい(測定法によって異なる)です。
なぜ、同じ骨格で結晶部(ラメラを形成する)と非晶部に分かれる
のかについては、未だに解明されておらず、興味深い問題です。

このことを前提にご質問に回答させていただきますと

分子量の大きさは、ラメラ厚に関する問題であり、融点に影響はあり
ますが、結晶化度への大きな寄与はありません。

ポリエチレンの100%結晶状態のΔHは仮想状態を仮定して計算により
求めた値です。この仮想状態については、知識不足でお答えできませ
んが、文献を遡れば確認可能だと思います。ただ、言えるのは分子
鎖は直鎖を仮定していることです。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q結晶化温度とガラス転移点て関係あるんでしょうか。

PETは結晶性高分子だけどペットボトルが透明なのは溶かした後、急冷したから~と習ったのはいいのですが、どっかの掲示板に、同じような質問で、その答が「ガラス転移点以下で急冷したから。ポットのお湯につけとくと白濁するよ。」と書いてあり、「あれ、ガラス転移点って非晶が動き出す温度だよな・・・?。何か関係あるのかな・・」と思いました。
なんだか分かるような分からないようなこんがらがっているのですが、ガラス転移点以下で急冷したからと言う答って正しいんでしょうか。それとも結晶化温度というのはガラス転移点の事なんでしょうか。分かる方よろしくお願いします。

Aベストアンサー

No.1の方の回答の通り、また、ashlley-kateさんが最初に思った通り、
ガラス転移点は非晶質部分の分子が動けるか否かの境界点です。

分子には分子間力(水素結合・ファンデルワールス力など)があり、
それが最も強くなる状態に配列された状態が「結晶」です。
一方、「ガラス」というのは、この配列化が間に合わないまま熱運動が
小さくなったために、不安定な状態のまま配列が固定された状態です。

従って、結晶とガラスが混ざった高分子を加熱した場合、
 1)まず、充分に安定化されていないガラス部分の固定が解かれ、
 2)次に、さらに温度が上昇することで、安定化されていた結晶部分も
  固定が解かれる
ことになります。
この「1)」の時の温度がガラス転移点、「2)」の温度が融点(=結晶化温度)、
ということです。
高分子では、全ての部分で「最も安定な配列」になることは難しいため、
「ガラス転移点=融点」となることはまずなかったと思います。

前後の文脈がわからないのでなんとも言えませんが、引用された回答は、
好意的に解釈するなら、『ガラス転移点以下「に」急冷したから。』の
つもりだったのかもしれません。
(例えば「水などで」といった言葉を入れていたのを途中でやめたものの、
 そのときに消す助詞を間違えた、とか)


そちらの記述を見られて混乱しただけと思いますので、恐らく不要とは思いますが、
一応参考URLを挙げておきます。
http://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%A9%E3%82%B9%E8%BB%A2%E7%A7%BB%E7%82%B9
http://www.ecosci.jp/poly/poly_tmtg.html
(特に最後の図で、端的に表現されています)

No.1の方の回答の通り、また、ashlley-kateさんが最初に思った通り、
ガラス転移点は非晶質部分の分子が動けるか否かの境界点です。

分子には分子間力(水素結合・ファンデルワールス力など)があり、
それが最も強くなる状態に配列された状態が「結晶」です。
一方、「ガラス」というのは、この配列化が間に合わないまま熱運動が
小さくなったために、不安定な状態のまま配列が固定された状態です。

従って、結晶とガラスが混ざった高分子を加熱した場合、
 1)まず、充分に安定化されていないガラス部...続きを読む

Q高分子のX線構造解析(SAXS,WAXS)

X線構造解析で小角と広角の構造解析についてですが、
なぜ、
小角散乱でラメラ構造などがわかり、
広角散乱でパッキング構造、結晶化度
が解析できるのでしょうか?
実際に装置を触ったことがなく、生データの見方もわかりません。わかりやすいホームページ、解説書など教えてください。

Aベストアンサー

高分子の構造解析は専門外ですが、通常の無機結晶のX線回折を使っている者です。
小角も広角も原理は同じです。有名なブラッグの関係式
2d・sinθ = n・λ
で解釈出来ます。ここで、dは調べようとする試料の結晶の面間隔、λは測定に使うX線の波長、θはX線回折測定結果で得られるピークの位置です。nは回折の次数ですが、とりあえずn=1の場合を考えましょう。
ただし、通常の粉末用装置では、横軸に回折角度としてデティクターのスキャン角度である2θを、縦軸に測定されたX線強度で測定結果を図示します。θではなくて、2θになっていることに注意してください。
ここで、ブラッグの式を見れば分かりますが、右辺は定数なので、θの大きいピークは、小さい面間隔のdからのものであることが理解出来るでしょう。
つまり、広角側で得られるピークは高分子の小さい面間隔に関する結晶の情報=分子のパッキング情報なわけです。一方、小角領域でのピークは、面間隔の広い結晶情報=ラメラ構造の面間隔の情報になるのです。
結晶化度に関しては、実は定量的に評価するのはけっこう難しいのですが、定性的な評価としては、ピーク強度が結晶化している体積を反映しており、ピークの幅がシャープなほど結晶のサイズが大きいor結晶の構造の乱れが少ないことを意味しています。
この評価は、原理的には小角でも広角でも同じなのですが、もう一度ブラッグの式に戻ってください。2d=n・λ/sinθと変形して両辺を微分します。すると、2Δd=-nλ・Δθ・cosθ/(sinθ)^2となります。
ここで、もう一度式を変形すると
2Δd・(sinθ)^2/(nλ・cosθ)=-Δθとなります。
ピークの幅とは右辺のΔθを意味しており、これは同じ結晶の乱れΔdに対して、θの小さい領域ではΔθがどんどんと小さくなることになります。つまり、小角領域では、結晶化度を評価するためのピーク幅が非常に小さいものとなり、測定装置自体の原因によるピークの幅より小さくなってしまい、実際には測定が不可能となります。従って、結晶化度の評価は主に広角で行うのです。また、結晶化度の意味からも、分子のパッキング面の完全度で評価する方が妥当ですし。

高分子の構造解析は専門外ですが、通常の無機結晶のX線回折を使っている者です。
小角も広角も原理は同じです。有名なブラッグの関係式
2d・sinθ = n・λ
で解釈出来ます。ここで、dは調べようとする試料の結晶の面間隔、λは測定に使うX線の波長、θはX線回折測定結果で得られるピークの位置です。nは回折の次数ですが、とりあえずn=1の場合を考えましょう。
ただし、通常の粉末用装置では、横軸に回折角度としてデティクターのスキャン角度である2θを、縦軸に測定されたX線強度で測定結果を図示します。...続きを読む

Q融点とガラス転移温度の違い

融点とガラス転移温度の違いが良く理解できません。分かりやすく教えてください。

Aベストアンサー

高分子やってるものです。おそらく質問にでてくる融点は普通いわれている融点ではなく、高分子特有のTmといわれているほうの融点ですよね?
板ガムを考えていただけるとわかりやすいと思います。ガムってそのまんまだと引っ張ってもぶちぶちきれちゃいますよね?でも口の中でかむとひっぱっても伸びるようになります。この引っ張っても伸びる性質に変わる温度が高分子における融点です。次にガムを寒いところもしくは冷凍庫に入れてみてください。常温のガムは折り曲げてもたたまれるだけなのですが、低温におかれたガムを折り曲げようとすると割れてしまうと思います。このぱきぱきの状態になってしまう温度がガラス転移温度です。
食品保存容器とかラップに耐熱温度がかかれていると思いますが、よくみるとなぜか上と下の両方の温度限界がかかれていると思います。上の方の温度限界(融点)になると溶けてしまうのはまあ想像がつくのですが、下の方の温度限界(ガラス転移温度)になるとぱきぱきになって容器が割れてしまうので書かれているのです。

QX線回折(XRD)分析の半値幅について

現在粉末用のXRD装置を使用しているのですが、半値幅に含まれる情報に関して教えてください!
参考書などを呼んでいると、結晶性のピークに着目した場合、ピークの半値幅が大きくなるほど結晶子サイズは小さいことを意味すると書いてあり、これはなんとなくわかりました。
しかし、非結晶性のものを測定すると一般的にはブロードピークとなるものが多いかと思うのですが、相互関係がわかりません・・・。非結晶性のものは結晶子サイズが小さいということではないですよね?

段々結晶子サイズが小さくなっていった時に、少しづつピークはブロードに近づくとは思うのですが、
・結晶子サイズが小さくなっている
というのと、
・非結晶性のものである
というものの区別はどうやって判断したらよいのですか?ある程度は半値幅を超えたら非結晶性のものとかいう基準があるのでしょうか?

Aベストアンサー

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低いか、3)装置による制約
から来ます。
原因3)は基準物質を使い補正計算をしてある程度除去することが
できます。
原因1)の影響を考慮したのがシェラーの式ですが、常に原因2)の寄与
も含まれています。
原因2)は小さくても結晶で有れば散乱強度を決める構造因子は定まります。
ここで構造因子に欠陥や小さくなることで発生した構造の乱れを組込めば
非晶性の広がったハローを再現できるかも知れません。
しかし、非晶性物質では構造の乱れは大きすぎ、結晶学的な構造因子は
もう決められません。
その代わりに、原子の相互配置を確率的に表した動径分布関数が散乱強度
の計算に導入されます。
一つの物質からの散乱強度の計算に、ここまでは構造因子方式、ここからは
動径分布関数方式という使い分けはされていません。

したがって、結晶子サイズが小さくなっているというのと、非結晶性の
ものであるということの明確な境界は無いように見えます。
当然、ある半値幅を超えたら非結晶性のものとかいう基準は有りません。

溶融体を急冷して結晶化させようとした場合、できたモノを欠陥だらけの
極微細結晶からなるとするか、非晶質になったと解釈するかは半値幅だけ
からはできないと思います。

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低...続きを読む

Q「PHR」という単位について

 樹脂の配合などにおいて添加剤の添加量を示すのに「PHR」や「phr」という単位を見かけるのですが、正式にはどういう意味なんでしょうか?

 自分としては「%」のつもりで解釈しているのですが、少し不安になってます。

 何かの略称とは思うのですが、それも判別がつきません。

 よろしくお願いします。

Aベストアンサー

日本語で「重量部」と言います。
樹脂の場合は P= per、H= hundred 、R = resin を表し、ゴムなら最後が R= rubber となります。

主の樹脂やゴムの重量を100として、その他配合、添加する物の重量を数字で表示します。
100分率の%と似ていますが、結果としてはその比率は違いますので、要注意です。

例えば、配合する物の合計が10であれば10÷110=約9%となりますが、仮に副樹脂を40として、
その他を代えなければ、10÷(100+40+10)=約6.6%となり、場合によっては、
大きく性質が変わる可能性があります。

Q冷結晶化温度について

冷結晶化温度が存在するとは具体的にどのような現象が生じていると考えるのでしょうか?

例えば、A-Bのグラフト共重合体(主鎖:A,側鎖:B)を熱分析(ここではDSC測定)すると、結晶融解後、急冷し再び昇温すると冷結晶化による発熱のピークが観られる場合があります。ポリマーBのホモポリマーのみの測定では発熱ピークが観られない。

上の現象は側鎖のB成分の分子量が大きい、または側鎖B成分の組成が大きい場合に観測されました。
まず、私なりの考察なんですが、発熱ピークがあるということは昇温中に結晶化しているということで、側鎖Bがガラス転移温度以上の温度で昇温されていく内に、かなり自由に動ける状態になり、しかも主鎖ポリマーAに束縛される形態となる。(主鎖ポリマーAのガラス転移温度はかなり高いものである。)したがって、近隣する側鎖同士が接近するような状態となり、結晶化構造を形成する。側鎖の分子量が低い、あるいは側鎖本数が少ない場合は、結晶化できないので冷結晶化温度は現われない。ホモポリマーBに冷結晶化温度が存在しなかったのは、グラフト共重合体のように分子が固定されていないため、分子同士が近接して結晶化ができないためである。まぁ、このように考えてみましたが、いかがでしょう?
この考えた方でよろしいのでしょうか?間違いやご意見がございましたら、お返事をお願いします。長文ですみません。

冷結晶化温度が存在するとは具体的にどのような現象が生じていると考えるのでしょうか?

例えば、A-Bのグラフト共重合体(主鎖:A,側鎖:B)を熱分析(ここではDSC測定)すると、結晶融解後、急冷し再び昇温すると冷結晶化による発熱のピークが観られる場合があります。ポリマーBのホモポリマーのみの測定では発熱ピークが観られない。

上の現象は側鎖のB成分の分子量が大きい、または側鎖B成分の組成が大きい場合に観測されました。
まず、私なりの考察なんですが、発熱ピークがあるということは昇温中に...続きを読む

Aベストアンサー

結晶性ポリマーはあまり詳しくないのですが,だいたい,おっしゃる通りの
説でぼくも納得できます。ただひとつ,ホモポリマーBで発熱ピークがでない
理由がよくわからないですね。
ホモポリマーBの発熱ピークの測定は,ABと全く同じ条件でやったのですか?
グラフト体でない方が立体障害がない分,結晶化しやすいように思えますね。
枝と枝の間の(Aの)n=2とかなら,「端がそろって一列に並ぶ」というのも
考えられますが,
n=10以上とかなら,あまり起こらないような気がします(当てずっぽうです)。
あと,回答になってないのですが,結晶化度は冷却速度に大きく依存しますよね。
双方について,冷却速度を変えた実験をやってみればヒントが得られるかも
知れませんね。

Qポリマーの融点について

ポリマーハンドブックや高分子データ・ブックなどでポリマーのガラス転移温度や融点を調べているとき、けっこう融点が記載されていないポリマーがあることに気づきました。(ガラス転移温度はほとんど全部記載されてました。)なんで融点が存在しないのでしょうか?また、文献によってガラス転移温度や融点の値がまちまちな理由もよくわかりません。

Aベストアンサー

1.ポリマーは次の2つに分類されます
・結晶性高分子(一般的な固体状態で結晶部分と非晶部分が混ざったもの)
  例:ポリエチレン、ポリアミド
・非晶性高分子(一般的な固体状態でほぼ非晶部分のみで形成されるもの)
  例:ポリカーボネート

2.Tg、Tmの定義
・Tg(ガラス点移転)…非晶部分の分子鎖が自由に動ける温度
・Tm(融点)…結晶部分の分子鎖が自由に動ける温度

上記1.2.より結晶性高分子にはTg、Tmが存在し、非晶性高分子はTgしか存在しません。

≪値がまちまちな理由≫
主な理由は分子量によってTg、Tmが異なるからです。
分子量大きい、つまり分子鎖一本の長さが長いとTg、Tmは高くなります。
(分子鎖が長いと、からみあって、なかなか自由に動けないイメージ)
結晶部分と非晶部分の占める割合や形態によっても変わります。

QDSCのガラス転移温度測定について

「DSCによりガラス転移温度を測定した」と多くの論文や本に書いてあります。
しかし、実際にその論文などに載っているピークを見ると、少しだけ曲がっている場所に強引に矢印をつけてTgと書いてあるものが多いと思います。
どなたかDSC曲線からガラス転移温度を求める方法をご存知な方、教えてください。

Aベストアンサー

#5です。#6さん、フォローありがとうございます。回答履歴をちょっと拝見しましたが、多才ですね☆DSCに詳しい人がいて下さると、心強いです。

質問者さんは恐らくブレンドポリマーのDSC測定をしたいんだと思います(参考URLに別の質問あり)。Tgの測定から、相溶・非相溶を調べる目的だと思います。このような場合、基本的には試料を加熱or冷却しないほうがよさそうですよね?ただ、熱履歴の前後でピーク(あるいはシフト)の数が変化しないなら、ピークを明瞭にする目的で熱履歴を与える戦法もありかな、と思います。

いずれにしても、DSC曲線は熱履歴の影響を受けやすく、#6さんはかなり高度なアドバイスをされているので、質問者さんは、よぉく勉強してから吟味することをお勧めします。

あと、ひとつ思い出したのですが、ポリマーのサンプルをアルミパンに入れた後、しっかりとシールしが方がいいですね。アルミパンの底部に試料が密着しているのが理想です。

ただし、融点を大幅に越える温度まで上げると、試料が体積膨張してパンが破裂することがあるので、要注意です。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=909525

#5です。#6さん、フォローありがとうございます。回答履歴をちょっと拝見しましたが、多才ですね☆DSCに詳しい人がいて下さると、心強いです。

質問者さんは恐らくブレンドポリマーのDSC測定をしたいんだと思います(参考URLに別の質問あり)。Tgの測定から、相溶・非相溶を調べる目的だと思います。このような場合、基本的には試料を加熱or冷却しないほうがよさそうですよね?ただ、熱履歴の前後でピーク(あるいはシフト)の数が変化しないなら、ピークを明瞭にする目的で熱履歴を与える戦法もありかな、と思...続きを読む

Q黄変したプラスチックの中では何が起きているのでしょうか

真夏になって日ざしが強くなりましたが、
先日、気が付いてみると、100円ショップでほんの去年新品購入したばかりのCD用収納ケースが、もう黄色くなっていました。

大体昔のプラスチックだと十年ぐらいして黄色くなるので、そろそろ寿命でもしかたないかな、と納得していましたが、どうも最近のプラスチックは黄色くなるのが早いような気がして疑問に思いました。

そこで初心に帰って横変の仕組みを教えていただければ嬉しいな、と思いました。

黄色くなったプラスチック、というのは、いったいどんな変化が発生しているんでしょうか?

黄色くなったからといってもすぐに壊れてしまうようなことも実用上ではないので、好奇心をそそられます。

はずかしながら夏休みオトナ相談室でどうぞ宜しくお願いします^^;

Aベストアンサー

ものはやや白濁した無色透明のプラスチックでしょうか?
(不透明の白、とかだと、顔料に話が飛びますので・・・)

上記の前提通りだとすると、恐らくポリプロピレン(PP)ではないかと思います。
だとすると、一番考えられるのは、樹脂用の酸化防止剤ではないでしょうか。
(No.2の方がお答えの通り、酸素と光は樹脂劣化の大きな要因ですので、その作用から樹脂本体を守るために添加されます)

フェノール系(ヒドロキノン系を含む)の酸化防止剤は、光で励起した一重項酸素(活性酸素)などとの反応でフリーラジカル(遊離基)を発生するのですが、確かこれが淡黄色~淡桃色に発色したように思います。
また、このラジカルが他の酸化防止剤の分子と反応することで共役系がのびた化合物になって、黄色になる(元々持っていた紫外線領域の吸収帯が長波側にシフトし、青色光領域に吸収を持つようになる)可能性もあります。


・・・と、小難しい話をしてしまいましたが、要は「樹脂の代わりに活性酸素と戦ってくれたものたちの残骸」が、ああして黄色くなっている、ということです。
ホラ、ばい菌と戦った白血球の死骸は黄色い膿になりますけど、あれと同じですね(違)

参考URL:http://www.scas.co.jp/analysis/pdf/tn098.pdf

ものはやや白濁した無色透明のプラスチックでしょうか?
(不透明の白、とかだと、顔料に話が飛びますので・・・)

上記の前提通りだとすると、恐らくポリプロピレン(PP)ではないかと思います。
だとすると、一番考えられるのは、樹脂用の酸化防止剤ではないでしょうか。
(No.2の方がお答えの通り、酸素と光は樹脂劣化の大きな要因ですので、その作用から樹脂本体を守るために添加されます)

フェノール系(ヒドロキノン系を含む)の酸化防止剤は、光で励起した一重項酸素(活性酸素)などとの反応でフリーラジカ...続きを読む

Q融点と軟化点の違い

初めて質問します。
タイトルそのままなんですが、融点は固体が液体になり始める点、軟化点は固体でなくなる点と書いてありました。
何が違うんですか??
教えてください><

Aベストアンサー

 「融点」は、固体から液体に変化する温度で、定義通りです。 純物質や物質構成が単純で固体から液体になる温度が比較的明確に測定できる場合に使います。

 「軟化点」は、各種物質が混ざっていて、それぞれの物質の融点が異なるため、ぐずぐずと次第に液体に変化するので明確な融点が測定できない場合の方便として用います。
 軟化したかどうかの判別法は、定義された形まで崩れる、上に置いた金属球が沈み込む位置、試験管内で上に乗せた水銀が下に回り込む、雫が出来て落下するところ、など、いろいろな方法が有ります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング