親子におすすめの新型プラネタリウムとは?

炭素鋼の比熱と熱伝導率をハンドブックで調べると、
   
温度[℃]、比熱[J/kgK]、熱伝導率[W/mK]
200、514、48  
400、586、41
500、648、38
600、707、34
800、623、25
900、548、27

とありました。
このように、温度によって比熱や熱伝導率はどうして変化するのですか?
極大値や極小値があるのはどうしてですか?
また、この数値をある解析に使おうと考えており、
各温度の間は最小自乗法で補間しようと思っているのですが、
このような場合、補間は普通どういったものを使いますか?
素人的な質問をいろいろ書きましたが、
詳しい説明を宜しくお願い致します。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

固体の比熱はDulong-Petitの法則として知られており、室温程度以上の領域なら定積モル比熱Cvは3Rで一定となります(結晶構造や原子間距離によらない)。

ここにRはガス定数です。
ところがもし膨張を許すならその膨張により外界に仕事をするわけですから、もう少し余分の熱量が必要です(定圧モル比熱Cp)。具体的にはGrueneisen定数γを用いて
 Cp=Cv(1+γαT)
と表されます。γは物質ごとの値です。
γの温度依存性は小さいので定数とみなすと、定圧モル比熱が温度とともに少し大きくなることは理解いただけると思います。(ご質問の比熱は定積比熱、定圧比熱のいずれでしょうか? 通常ですと測定し易い定圧比熱の値だと思いますが。なお上記の説明では「モル比熱」を用いていますが、質量当たりの比熱([J/kg K])でも議論の本質が同じであることは申し上げるまでもありません)
さらに高温にした場合(ご質問の800℃以上)で比熱が下がっている理由は残念ながら分かりません、すみません。

熱伝導率の温度変化の説明には簡単な固体物性の知識が必要です。
固体中の熱は格子の弾性波に対応する量子(フォノン)によって運ばれます。熱伝導率κはフォノン1個の熱容量をc、固体中の音速をv、フォノンの平均自由行程をLとして
 κ=(1/3)c v L
と表されます。
高温ではフォノン同士の衝突機会が増えてフォノンの平均自由行程Lが短くなり、そのために熱伝導率が低下します。

補間は解析の種類や必要とする精度にもよりますが、大抵の場合(例えば有限要素法による熱伝導解析)は最小自乗法を持ち出すまでもなく折れ線近似で十分だと思います。比熱や熱伝導率の温度依存性の影響はそれで見ることができます。さらに詳細な変化まで追いたい、ということであれば改めて高次の近似をすればよいでしょう。
    • good
    • 3

物理屋の siegmund です.


鉄は専門じゃありませんし,
No.3 の ymmasayan さんご紹介の炭素鋼の相図など見ると
「ひぇ~」と思うくらいです.
で,コメントをちょっと.

相転移点(変態も相転移の一種)付近で比熱が増大するのは一般的現象です.
上の相図ですと,ymmasayan さんご指摘のように726℃付近に変態点がありますので,
質問の比熱の温度依存性と一応符合します.
比熱の温度依存性の振る舞いをグラフにしてみると,
2次相転移の典型的な形に見えます(ちょっとデータが粗すぎますが).

なお,No.1 で ymmasayan さんは熱膨張や結晶構造変化に触れられて,
> 比熱は体積あたりですので、温度によって当然変化するはずです。
と書かれていますが,質問の比熱は [J/kg K] ですから,
単位体積あたりではなく単位質量あたりの値ですね.

No.2 で Umada さんが格子の弾性波と熱伝導率の議論をされています.
議論自体はその通りなのですが(c は単位体積あたりの熱容量です),
鉄は金属ですから熱伝導の主要部分は伝導電子によるものです.
したがって,結晶構造の変化の熱伝導率への影響は間接的です.
これは,熱伝導率の温度変化が単調で,
比熱のピークのあたりでもさして大きな変化はないように見えることと
符合しています.
でも,やっぱりデータが粗いですね.
詳細に測定すれば,変態点のところで多少の異常は見えるはずです.

なお,伝導電子からの比熱への寄与は小さいことが知られています
(電子がフェルミ粒子であることの帰結です).

要約しますと,
○ 比熱 --- 格子からの寄与がほとんど
  726℃付近の変態点のため,その付近でピークを持つような振る舞い.

○ 熱伝導率 --- 伝導電子からの寄与がほとんど.
  格子の影響は間接的であるため,
  726℃付近の変態点でも大きな変化はない.
    • good
    • 5

No.1のymmasayanです。


ここまで必要なければ無視してください。
少し見にくいですが、鉄-炭素系の平衡状態図を見つけました。
詳細は説明しませんが、726℃付近に変態点があります。
炭素の含有量によって違いますが、結晶構造ががらりと変わっています。

参考URL:http://www2.tokai.or.jp/kajiya/netu10.htm
    • good
    • 0

炭素鋼といっても成分によってもかなり違うと思います。


詳しい事は忘れましたが、炭素鋼の場合、温度によって何回か結晶構造が変わります(変態)。
又、温度によって分子・原子間の距離も変わります(熱膨張)。
従って、比熱は体積あたりですので、温度によって当然変化するはずです。
熱伝導率も同じだと思います。

補間は色々な方法がありますが、まずグラフを書いてみて変化の様子をつかんでから直線近似、曲線近似などを選べばいいと思います。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q物質の比熱の温度による違い

物理で比熱の実験をしたので、物質の比熱の文献値を調べていたのですが、温度によって違いがありました。

温度が0度のとき、アルミニウムは0.880、鉄は0.435、銅は 0.379でした。(全てJ/g・K)

温度が25度のとき、 アルミは0.902、鉄は0.451、銅は0.385でした。(全てJ/g・K)

温度が25度以上のときの文献値が見つからなかったので、その後の変化の仕方を教えてください。また、この物質の比熱の変化は、実験の値にかなり影響するのでしょうか。相殺などができて、無視できるのでしょうか。

Aベストアンサー

伝熱エンジニアです。
0℃と25℃の値はどちらも実験値でしょうか。
今は自宅なので手元にデータブックがないのですが、Webで探してみると、いろいろな金属の比熱の近似式があるようです[1]。J/g/K単位の比熱(定積比熱)は次式で表わされます。

   cp = 4.186*a*T^b*exp( a*T + d/T )

T は温度 [K]です。a, b, c, d の値は以下のようになっています(文献 [1]の Table I に出ています)。

    a      b     c       d  適用温度範囲
Al 6.273517 -0.5469 0.000925 -156.932 46K-923K
Cu 0.002842 0.901841 -0.00511 -60.9522 16K-300K
Fe 10.06843 -0.76423 0.001506 -190.421 58.7K-773K

手元にある伝熱工学の参考書に出ている数表と比較してみました。Cu以外は良く合っています。Cuの補間値は、数表の値(300K-800K)を直線補間したほうが良いでしょう(300K以上では温度に対してほぼリニア)。

Al(アルミニウム)
温度 [K] 数表値 [1]の近似値
  150 0.686  0.684
  200 0.801  0.795
  250 0.860  0.862
  300 0.905  0.908
  600 1.04  1.065
  800 1.14  1.169

Cu(銅)
温度 [K] 数表値 [1]の近似値(*印は近似範囲外)
  150 0.322  0.338
  250 0.376  0.378 
  300 0.386  0.359
  600 0.425  0.160*
  800 0.447  0.077*
  1000 0.471  0.034*
  1200 0.492  0.015*

Fe(鉄)
温度 [K] 数表値 [1]の近似値(*印は近似範囲外)
  150 0.366  0.322
  250 0.422  0.422
  300 0.442  0.449
  600 0.566  0.570
  800 0.686  0.670*
  1200 0.600  0.972*

このまま質問を開いておいてもらえますか?会社にあるデータブックを明日見てきます(詳しい値は出てないかもしれませんが)。必要な温度範囲はどれくらいですか?

[1] 金属・酸化物の比熱 http://www.scielo.org.ar/pdf/laar/v34n4/v34n4a09.pdf

伝熱エンジニアです。
0℃と25℃の値はどちらも実験値でしょうか。
今は自宅なので手元にデータブックがないのですが、Webで探してみると、いろいろな金属の比熱の近似式があるようです[1]。J/g/K単位の比熱(定積比熱)は次式で表わされます。

   cp = 4.186*a*T^b*exp( a*T + d/T )

T は温度 [K]です。a, b, c, d の値は以下のようになっています(文献 [1]の Table I に出ています)。

    a      b     c       d  適用温度範囲
Al 6.273517 -0.5469 0.000925 -156....続きを読む

Q熱伝達率について

熱伝達率について調べると、流れている空気の場合、11.6~290.7w/(m^2・k)とありますが、下記の条件の場合の熱伝達率は概算値でけっこうですので、分からないでしょうか?
表面積0.03m^2の円筒物、温度80℃、重量2kg、物質の密度7.874×10^3kg/m^3、体積0.256×10^-3m^3、比熱461J/(kg℃)
1540mm×2700mm×300mmで囲われている室内で、周りの雰囲気温度17℃、室内には17℃の空気が2.5m/secで流れている状態内に、80℃の物体が置かれている。
熱伝達率は、レイノルズ数とプラントル数などにより定義され、実験値や複雑な計算が必要と思われますが、やり方の方向性が知りたいための熱伝達率なので、大体の数値でいいので、教えて頂けないでしょうか

Aベストアンサー

「対流による物体の冷却後の温度」でお答えした inara1 です。
Re や Pr をご存知なのでちゃんとしたお答えをします。

以下に計算方法を書きますが、熱伝達率は 35 ~78 [W/m^2/K] となりました。この値からワークの温度変化を計算すると、20秒間に76.9 ~ 78.6 [℃] に下がることが分かりました。

【確認】
円筒物とは中がつまった円柱のことですね?
ご質問のワークの体積と表面積から円柱の直径 R と長さ L を計算すると、以下の2通りの場合がありますが、(1) のほうですね。(2) だと円板になりますので。
   (1) R = 0.0367 [m]、L = 0.242 [m]
   (2) R = 0.116 [m]、L = 0.0242 [m]

【円柱外部を冷却するときのNu数】
円柱を強制空冷する場合、空気を円柱軸に沿って流す場合と円柱側面に冷気を当てる場合では Nu(ヌセルト数)が異なりますが、普通は円柱側面に冷気を当てると思いますので、その場合の実験式は次のようになります。
   Nu = C*Re^n*Pr^(1/3) --- (1)
Re はレイノルズ数、Pr はプラントル数で
   Re = u*R/ν --- (2)
です。u [m/s] は冷気の流速、R [m] は円柱の直径、ν [m^2/s] は冷気の動粘性係数です。Pr と ν の値は、冷気温度と円柱表面の温度の平均温度での値を使います。Pr と ν の温度依存は[1] で計算できます。

【Nu数の実験式】
C と n は定数で、Re の値によって以下のような値をとります [2]。
     Re         C    n
   40~4000     0.683 0.466
   4000~40000   0.193 0.618
   40000~400000 0.0266 0.806
冷気温度と円筒表面の温度の平均温度が 20℃~80℃の範囲にあるとき、[1] を使って動粘性係数 νを計算すると、3.3×10^(-6) ~ 9.5×10^(-6) [m^2/s] なので、R = 0.0367 [m]、u = 2.5 [m/s] の場合のレイノルズ数は、式(2)で計算すると Re = 9703(20℃)~27500(80℃)の範囲になります。したがって、C と n の値は C = 0.193、n = 0.618 を使えばいいことになります。Re = 9703~27500 に対する Nu は、式(1)で計算すると 50~95 の範囲になります。

【熱伝達率とNu数の関係】
一方、Nu と熱伝達率 h [W/m^2/K] との関係は、円柱の場合
   Nu = h*R/kf
で表わされます。kf は冷媒(空気)の熱伝導率 [W/m/K] です(円柱の熱伝導率と区別するために f をつけます)。空気の熱伝導率の温度依存は [3] で計算すると、冷気温度と円筒表面の温度の平均温度が 20℃~80℃の範囲にあるとき、kf = 0.026 ~ 0.030 W/m/K の範囲になります。したがって、R = 0.0367 [m]、u = 2.5 [m/s] の場合の熱伝達率 h は
   h = Nu*kf/R = 35 ~78 [W/m^2/K] --- (3)
となります。これは質問文にある空気の熱伝達率の範囲に入っています。

【熱伝達率と円柱温度の関係】
考えている円柱は細長いので、内部の温度分布は一様とみなせます [4]。その場合、円柱が一定の熱伝達率で冷却されたときの円柱温度 T [℃] の時間変化は次式で表わされます。
   T = Tc *( T0 - Tc )*exp{ -h*A*t/( ρ*cp*V ) } --- (4)
で表わされます。Tc は冷気温度 [℃]、T0 は円柱の初期温度 [℃]、S は冷却面積(円柱側面の表面積) [m^2] 、t は時間 [sec]、ρは円柱の密度 [kg/m^3]、cp は円柱の比熱 [J/kg/K] です。したがって、 Tc = 17 ℃、T0 = 80 ℃、S = 0.03 m^2、ρ = 7874 kg/m^3、cp = 461 J/kg/K 、V = 0.256×10^(-3) [m^3] のとき、冷気にさらされてから 20sec 後の円柱温度 T20 は以下のようになります。
   T20 = 76.9 ~ 78.6 [℃] --- (5)
これは ANo.1 での概算計算結果
   Tout = 75.9 [℃]
とほぼ同じです(やはり意外に冷えません)。

この計算はクーラのダクトから17℃の冷気が複数の円柱にまんべんなく当たっている場合ですので、ワークの配列によっては結果が違ってきます(これより冷えることはありませんが)。クーラの冷却能力を倍にした場合は、風速を倍の 5 [m/s] にすればいいはずです。式(4)で冷却時間をもっと長くしてみればどれくらいまで冷えるか計算できますが、ワークが冷やされてくると冷気との温度差がなくなっていくので、熱伝達率が一定でも、単位時間に奪われる熱量が減ってくるので、だんだん温度の下がり方が鈍くなります(式(5)で時間を変えて計算してみると分かります)。

空気の動粘性係数 ν や熱伝導率 kf、それらから計算される Re数やPr数、Nu数は、厳密には円柱温度と冷気温度の平均値での値を使わなければなりません。具体的な計算手順は、最初に、円柱温度を75℃くらいと仮定して、その温度と冷気温度の平均の46℃での物性値を使って計算し、出てきた円柱温度と冷気温度の平均温度を使って空気の物性値を補正し、また円柱温度を計算するということを繰り返せば、最終的な円柱温度が出てきます。しかし、式(5)の温度範囲は、冷気温度と円柱表面の温度の平均温度が 20℃~80℃とした場合の値なので、最終的な円柱温度の値は式(5)の範囲に入っているはずです。

【補足】
[1] 1気圧の空気の Pr 数はと動粘性係数 ν は、室温付近では次式で近似されます。
      Pr = 0.713 - 0.0002*t
      ν = 1.296×10^(-6) + 1.02×10^(-7)*t
   t は空気の温度 [℃] です。
[2] 谷下市松「伝熱工学」裳華房(1986)p.142.
[3] 1気圧の空気の 熱伝導率 kf [W/m/K] は、室温付近では次式で近似されます。
      kf =0.0243+0.0000741*t
   t は空気の温度 [℃] です。
[4] 円柱の体積を V [m^3]、冷却面積(側面)を A [m^2]、円柱の熱伝導率を k [W/m/K]、熱伝達率を h [W/m^2/K] としたとき
   h*V/( k*A ) < 0.1
を満たせば内部の温度分布は一様とみなせます。炭素鋼(S53C)の熱伝導率の値はWebでは見つかりませんでしたが、資料 [2] に出ている炭素鋼の値は 54 W/m/K( 0.5C以下)~36 W/m/K(1.5C)なので、45 [W/m/K] くらいとすれば、この場合、Nu = 50~95、V = 0.256×10^(-3) [m^3]、A = 0.03 [m^2] なので、h*V/( k*A ) = 0.0095~0.016 < 0.1 となって条件を見たします。谷下市松「伝熱工学」裳華房(1986)p.83.

「対流による物体の冷却後の温度」でお答えした inara1 です。
Re や Pr をご存知なのでちゃんとしたお答えをします。

以下に計算方法を書きますが、熱伝達率は 35 ~78 [W/m^2/K] となりました。この値からワークの温度変化を計算すると、20秒間に76.9 ~ 78.6 [℃] に下がることが分かりました。

【確認】
円筒物とは中がつまった円柱のことですね?
ご質問のワークの体積と表面積から円柱の直径 R と長さ L を計算すると、以下の2通りの場合がありますが、(1) のほうですね。(2) だと円板になりますの...続きを読む

Q熱交換の基礎式を教えてください。

熱交換器における基礎式を教えてください。
蒸気と水での熱交換を行う際に、入口温度と出口温度の関係、
それに流速等も計算のデータとして必要なんだと思うんですが、
どういう計算で熱量、流速を決めればいいのか熱力学の知識がないので
分かりません。
いろんな書籍を買って勉強していますが、難しくて分かりません。
それに独学ですので、聞ける人がいなくて困っています。
どなたか、簡単に熱交換の基礎式などを教えてください。

Aベストアンサー

 伝熱の計算は非常に難しいのですが、「難しい」と言っているだけでは先に進みませんので、そのさわりを。
 基本式は、Q=UAΔtです。
 Q:交換される熱量
 A:伝熱面積
Δt:伝熱面内外の温度差
  (冷却水入出の差ではない)

 ここで曲者は、U(総括伝熱係数とか熱貫流係数とか呼ばれるもの)です。
 Uの内部構造は、1/U=1/h1+1/hs1+L/kav.+1/hs2+1/h2と表現され、hを見積もる事が大変難しいのです。
 h:伝熱面の境膜伝熱係数、内外2種類有る。
 hs:伝熱面の汚れ係数、内外2種類有る。
 L:伝熱面厚み
 kav:伝熱面の熱伝導率の異種温度の平均、熱伝面内外で温度が異なり、温度によって変化する熱伝導率を平均して用いる。
 hは、流体の種類や流れる速さ(主な指標はレイノルズ数)によって変化します。
 hsは、どの程度見積もるか、、、設備が新品ならZeroとしても良いのですが、使い込むとだんだん増加します。
 更には、Aも円管で厚みが有る場合は、内外を平均したり、Δtも入り口と出口の各温度差を対数平均するとか、色々工夫すべきところがあります。

>冷却管はステンレス製(SUS304)です。
 →熱伝導度の値が必要です。
>冷却管の中の水の温度は入口が32℃で出口が37℃です。>流量は200t/Hr程度流れております。
 →冷却水が受け取る熱量は、200t/Hr×水の比熱×(37-32)になります。この熱量が被冷却流体から奪われる熱量です。=Q
>冷却管の外径はφ34で長さが4mのものが60本
>冷却管の外径での総面積は25.6m2あります。
 →冷却管の壁厚みの数値が計算に必要です。
 伝熱面積も外側と内側を平均するか、小さい値の内側の面積を用いるべきです。

 まあしかし、現場的な検討としては#1の方もおっしゃっているように、各種条件で運転した時のU値を算出しておけば、能力を推し測る事が出来ると思います。
 更には、熱交換機を設備改造せずに能力余裕を持たせるには、冷却水の温度を下げるか、流量を増やすか、くらいしか無いのではないでしょうか。

 伝熱の計算は非常に難しいのですが、「難しい」と言っているだけでは先に進みませんので、そのさわりを。
 基本式は、Q=UAΔtです。
 Q:交換される熱量
 A:伝熱面積
Δt:伝熱面内外の温度差
  (冷却水入出の差ではない)

 ここで曲者は、U(総括伝熱係数とか熱貫流係数とか呼ばれるもの)です。
 Uの内部構造は、1/U=1/h1+1/hs1+L/kav.+1/hs2+1/h2と表現され、hを見積もる事が大変難しいのです。
 h:伝熱面の境膜伝熱係数、内外2種類有る。
 hs:伝熱面の汚れ係数、内外2...続きを読む

Q定圧比熱の温度依存性について

おせわになります。
とあるガスの分解温度を自由エネルギー(△G)で推算しようと考えています。温度は500K、1000Kです。

H=H0+∫CpdT、S=∫CpdTで求めようとしています、
そこでCpの温度関数がわかりません。
知りたいのは、Cp=a+bT+cT^2のa,b,cの値です。

298Kの値(標準生成H、S)は化学便覧に載っているのですが、その値を500K、1000Kにそのまま適用していいのかよくわからないところもあり、検証したいのです。

NIST-JANAF Thermochemical Tablesには載っているらしいのですが、
高価な本であるため手が出ません。インターネットで公開されたいるデータベースはないでしょうか?
やっぱり、大学の図書館とか手はないのでしょうか?
以上よろしくお願いします。

Aベストアンサー

> インターネットで公開されているデータベースはないでしょうか?

NIST Chemistry WebBook / Search for Species Data by Chemical Formula
http://webbook.nist.gov/chemistry/form-ser.html
Thermodynamic Data の Gas phase にチェックを入れて検索してみて下さい。

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q熱伝導率と電気伝導率の関連性について

タイトルにも挙げたように金属や半導体における熱伝導率と電気伝導率はどのような関係を持っているのかがいまいち理解できません。分かる方がいらしたらぜひ教えてください、お願いします。

Aベストアンサー

 物質の熱とは格子振動、つまり原子核の振動なんですが、
それを伝えているのは通常電子なんです。
 熱せられ原子が振動しても、原子核同士が衝突する
わけでなないので、その振動(つまり熱)を伝える
担い手になっているのは、原子核の周りの電子及び電磁波なんです。

 ここでいきなり電磁波が出てきて少しフシギかもしれませんが、
電子も原子核を直接ぶつかっているわけではないので、
電子と原子核のエネルギーの交換の担い手としては電磁波が出てくる
のです。


 鉄を熱すると赤くなりますよね。つまり赤い光が
出てるわけじゃないですか。光ってつまりは電磁波
でしょ。周囲の電子、原子核に伝えても余るエネルギー
は電磁波のまま、物質の外に出てきてしまうわけです。

 熱した鉄に直に手を触れなくても、手を近づけた
だけで暖かく感じるのは、鉄の出す赤外線で熱せられた
空気の振動と、鉄の出す赤外線を直に人の手が
感じるからなんですが、いずれにせよ熱の伝達には電磁波が
つき物なんですが、電磁波は電子の運動で発生するもの。
だから、電子が自由に動ければ電磁波が発生しやすく
その電磁波が回りの電子に影響を与え、その電子が
動きやすければさらに電磁波の発生、そして周囲の格子振動
へと変わっていくわけです。(少しおおざっぱですが)
  動きやすい電子? つまり伝導帯にある自由電子が
多ければそれだけ熱は伝わりやすいのです。

 そのため一般には自由電子密度が大きい物質、つまり
金属は熱の良導体になります。自由電子が電流の
担い手であることはご存知ですね。

 ということで通常は熱の良導体は同時に電気の良導体に
なります。
 
 勿論例外も多々あります。その場合は自由電子が電気を運んで
いないわけです。ですから物質の電気的性質をより深く研究
するときは、その物質の比熱の変化とかいった熱力学的性質を
十分調べるのです。

 物質の熱とは格子振動、つまり原子核の振動なんですが、
それを伝えているのは通常電子なんです。
 熱せられ原子が振動しても、原子核同士が衝突する
わけでなないので、その振動(つまり熱)を伝える
担い手になっているのは、原子核の周りの電子及び電磁波なんです。

 ここでいきなり電磁波が出てきて少しフシギかもしれませんが、
電子も原子核を直接ぶつかっているわけではないので、
電子と原子核のエネルギーの交換の担い手としては電磁波が出てくる
のです。


 鉄を熱すると赤くなりま...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q熱伝導率と熱伝達率

熱伝導率と熱伝達率の違いをネットで調べたところ、
熱伝導率は物性値で、熱伝達率は物性値ではない、という記載を見つけました。
熱伝達率は周囲環境に依存するとありました。

すると、何の条件も示さずに、単に物質の一般的性質を表す場合に、
「この物質の熱伝達率は○○です。」と書くのは、間違っているのでしょうか?

Aベストアンサー

例えば,棒状試料の側面を断熱して両端に温度差をつけます.
当然,高温側の端から低温側の端へ熱が流れます.
温度差に対してどれくらいの割合で熱が流れるかを表すのが
熱伝導率です.
電気伝導のオームの法則は
ΔV = R I  (電位差 ΔV,電気抵抗 R,電流 I)
ですが,全く同様に熱伝導に関して
ΔT = R_T J  (温度差 ΔT,熱抵抗 R_T,熱流 I)
です.
棒状試料ですと,電気抵抗は断面積 S に反比例し長さ L に比例しますから
R = ρL/S
と書いて,ρを電気抵抗率,その逆数 σ=1/ρ を電気伝導率と呼んでいます.
熱の場合も全く同様で
R_T = ρ_T L/S
と書いて,ρ_Tが熱抵抗率,その逆数 κ=1/ρ_T が熱伝導率です.
物質が決まればκが決まりますので,それで物性値といいます.

一方,熱伝達率(通常は表面熱伝達率を指すようです)は
物体表面から熱が失われてゆく(周囲の方が物体より低温だとして)ことに関係しています.
同じ物体を同じ温度に保ち,さらに周りの温度が同じでも,
失われる熱量の割合は周囲の環境によって違います.
ぬるい缶ビールを冷やすのに,氷水(摂氏零度)につけるのが早く冷えるか,
摂氏零度の冷蔵庫に入れるのが早く冷えるか,どちらでしょう.
もちろん,氷水です.
同じ物体,同じ周囲温度でも,環境によって全然違うわけです.
こういうわけで,熱伝達率は対象とする物質のみでは決まらず,
周囲の環境に大きく依存します.
それで物性値ではないというのでしょう.

> 「この物質の熱伝達率は○○です。」
> と書くのは、間違っているのでしょうか?

上に書いたように,
周囲の状況を決めないと物質だけでは意味がありませんね.

dahho さんが
> 「この材質で断面積○mm^2長さ○mmの棒の熱伝達率は○○です。」
と書かれている量は,熱抵抗 R_T の逆数に当たる量で,
熱コンダクタンスと言われます.

例えば,棒状試料の側面を断熱して両端に温度差をつけます.
当然,高温側の端から低温側の端へ熱が流れます.
温度差に対してどれくらいの割合で熱が流れるかを表すのが
熱伝導率です.
電気伝導のオームの法則は
ΔV = R I  (電位差 ΔV,電気抵抗 R,電流 I)
ですが,全く同様に熱伝導に関して
ΔT = R_T J  (温度差 ΔT,熱抵抗 R_T,熱流 I)
です.
棒状試料ですと,電気抵抗は断面積 S に反比例し長さ L に比例しますから
R = ρL/S
と書いて,ρを電気抵抗率,その逆数 σ=1/ρ を電気伝導率と呼ん...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング