【最大10000ポイント】当たる!!質問投稿キャンペーン!

こんにちわ

大学のテスト勉強でエネルギー準位について勉強してるのですがわかりません

N2分子ではδ軌道のエネルギー準位がπ結合のものより高くなっているのですがどうして高くなるのかわかりません

どなたか教えていただけませんか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

どこかにあった説明の受け売り:


2σg は 2s から, 3σg は 2p からできます. ということで, 2σg と 3σg が再混成するときの割合はもともとの原子における 2s と 2p のエネルギー差に依存します (エネルギー差が小さいほど混成の割合が大きい).
そして, N と O では N の方が 2s と 2p のエネルギーの差は小さくなっています. そのため N2 における 2σg/3σg の混成は O2 における混成より強く, 従って N2 の方が「2σg はより低く 3σg はより高く」なります. これと, 「O が N より核電荷が大きい」ことによる全体的なエネルギーの低下とからんだ結果「N2 と O2 で 3σg と 1πu の準位が逆転する」んだそうです.
受け売りなので突っ込まないでください.
    • good
    • 1
この回答へのお礼

受け売りでもわかりやすいです
ありがとうございます

お礼日時:2008/07/22 17:58

δ軌道ではなくてσ軌道だと思います。

d-d結合ではないから。

理由は、私には分かりません。(笑)
説明は、↓東大、教養の無機化学ノート。N2の分子軌道の処をご覧下さい。
http://www.frad.t.u-tokyo.ac.jp/~miyoshi/InCh200 …
「2σgと3σgが反発を起こすため」と説明してありますね。
一般には「対称性が等しい軌道同士は再混成する」のが普通です。そのため元々低い2σgをさらに低く、高い方の3σgはより高くなるという現象が起きます。
添え字のgは「gerade」、uは「ungerade」だと教わりました。対称操作に対して不変か、逆転かを表しているはずです。
    • good
    • 1
この回答へのお礼

δ軌道ではなくてσ軌道でした

間違いを指摘していただきありがとうございました

お礼日時:2008/07/22 17:57

このQ&Aに関連する人気のQ&A

大学 テスト」に関するQ&A: logとln

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電子配置について

Ni2+(ニッケルイオン)の電子配置と不対電子を示せという問題で僕は、[Ar]3d64s2と考えたのですが・・・答えは[Ar]3d8となっています。電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?よくわからないので教えてください。

Aベストアンサー

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が抜けるときには、4s軌道から先に抜ける。
と覚えるのもいいです。

■Ni2+の場合
はじめの考え方に従うと、ニッケルは10族、イオンの価数は2なので、
 3d電子の数=10-2=8
となって、電子配置は[Ar]3d8になります。
 二番目の考え方では、中性のニッケル原子の電子配置[Ar]3d84s2から、電子を2個抜いたのが2価ニッケルイオンなので、4s軌道から電子を2個抜くと、イオンの電子配置は[Ar]3d8になります(Ni3+ならNi2+の電子配置からさらに1個電子を抜いて、[Ar]3d7になります)。

■考え方が破綻する例
Ca+,Sc+,Ti+,V+,Mn+,Fe+,Co+,Ni+,Zn+では、これらの二つの考え方から導かれる答えは一致しません。例えば、考え方その1ではNi+の電子配置は[Ar]3d9になりますが、考え方その2ではNi+の電子配置は[Ar]3d84s1になります。しかしこれらの1価の陽イオンは、きわめて特殊な条件下でしか生成しませんので、通常これらの電子配置が問題になることはありません。
 第4周期の1族~12族の1価金属イオンで重要なものは、K+とCu+です。この二つのイオンに関しては、考え方その1でも考え方その2でも、正しい電子配置を与えます。

■なぜ中性原子とイオンで電子の詰め方が変わるのか?
カリウム(原子番号19)とカルシウム(原子番号20)では、4s軌道の方が3d軌道よりもエネルギーが低いのですけど、じつは、原子番号が20より大きい原子では、エネルギーの順序が逆転して、4s軌道よりも3d軌道の方がエネルギーが低くなります。
 ですので、「エネルギーが低い軌道から電子を詰めていく」というルールに従えば、Sc,Ti,V,Cr,Mn,...では、4s軌道よりも先に3d軌道に電子を詰めていくことになるのですけど、こうやって作った電子配置は、中性原子(と多くの一価イオン)では、正しい電子配置にはなりません。つまり、原子番号が20より大きい中性原子では、「エネルギーが低い軌道から電子を詰めていく」というルールだけでは、正しい電子配置を予測することができません。
 この困難を乗り越えるためには、本当ならば、「電子と電子の間に働くクーロン反発力」を考えに入れなければならないのですけど、これが結構めんどうな話になります。そこで、めんどうな話を避けるために、少し反則気味なのですけど、「エネルギーが低い軌道から電子を詰めていく」というルールだけを使って正しい電子配置を予測できるように、『原子番号が20より大きい原子でも、4s軌道の方が3d軌道よりもエネルギーが低い』ということにしておいて、4s軌道が満たされてから3d軌道に電子が入る、という説明がなされます。
 陽イオンでは、中性原子に比べて電子が少なくなっていますので、電子と電子の間に働くクーロン反発力は、中性原子のそれと比べて小さくなります。そのため、クーロン反発の話を無視しても、正しい電子配置を得ることができます(一価の陽イオンは除く)。本来、4s軌道よりも3d軌道の方がエネルギーが低いのですから、3d軌道が満たされてから4s軌道に電子が入る、ということになります。

■まとめ
中性原子では、4s軌道の方が3d軌道よりもエネルギーが低いので、4s軌道が満たされてから3d軌道に電子が入る。
陽イオンでは、4s軌道よりも3d軌道の方がエネルギーが低いので、3d軌道が満たされてから4s軌道に電子が入る。
中性原子と陽イオンで軌道の順序が変わるのは、電子と電子の間に働くクーロン反発力が陽イオンでは小さくなるからである。

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が...続きを読む

Q電子軌道のエネルギー準位

電子軌道のエネルギー準位は内に行くほど低くなる、と書いてあるのですがエネルギー準位とは何ですか?

また、電子がエネルギー準位の低いところから埋まっていく理由も教えてください。

Aベストアンサー

例えば次のURLを参考にされてはいかがでしょう。

http://hyper-chemistry.blog.so-net.ne.jp/2011-03-02

Q原子価結合法と分子軌道法

原子価結合法と分子軌道法の違いが
いまいち分かりません。
数式ばかり並べられているのを見ても
どこがどう違うのかを言葉でうまく表現出来ません。
本なども読んでみたのですが、どれも難しすぎて、明確にどこがどう違うのかが分かりません。
どなたか分かりやすく、これらの違いを説明してくださいませんか?

Aベストアンサー

レスが付かないようなので、一言。
このサイトのココ↓
http://okwave.jp/kotaeru.php3?q=561839
に大変詳しく、分かりやすい解説が載っていますよ。一度ご参照してみてください。

参考URL:http://okwave.jp/kotaeru.php3?q=561839

Qエネルギー準位図のかきかた

今大学一年です。
分子軌道法を用いて説明するときの、エネルギー準位図をかくとき、π結合の軌道を一重線のときや二重線のときがありますが、これはどう違うのでしょうか?

初歩的な質問なので教授にも聞けず…どなたかよろしくお願いします。

Aベストアンサー

>π結合の軌道を一重線のときや二重線のとき
これはベンゼンのときなど「対称性が高い」場合に現れます。
ベンゼンのp軌道からつくられるπ軌道のHOMO、π*のLUMOは同じエネルギーの軌道が二つずつあります。
化学では「縮重」、物理では「縮退」と呼びます。
対称性が高い分子の場合に見られます。
電子のエネルギーレベルだけでなく振動エネルギーの軌道などでも見られます。
原子の軌道でも、px、py、pzなどは縮重しています。
分子の場合ベンゼン以外で良く知られているのは三重項酸素の反結合軌道(LUMO)二つの縮重です。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q酸素分子について

ネットで調べものをしていると、
 「酸素分子の分子軌道は、2p軌道の計8個は、もともと対になっている4個(2組)と共有されて対になった2個と、対になっていない2個という配置になる」
という文章を見つけたのですが、(ウィキペディア)

対になっていない2個は、対になって、OとOの間で2重結合になると思っていたのですが、ならないのでしょうか?

対にならないとしたら、酸素分子は、 O2^2- (マイナス2価)
になってしまうのではないでしょうか?

よろしくお願い申しあげます。

Aベストアンサー

質問の意味がわかりません。軌道と点電子構造の関係性は主に主量子数のみ考えるべきだと思います。

酸素原子は

1s^(2)、2s^(2)、2p^(4)
=K殻に2個、M殻に6個

であり、等核二原子分子になる際に(酸素分子)、s軌道とp軌道が混成します。結合の数は、結合次数で決まります。

酸素分子

δ1s^(2)、δ※1s^(2)、δ2s^(2)、δ※2s^(2)、π2pz^(2)、π2px^(2)、π2py^(2)、π※2px^(1)、π※2py^(1)


結合次数=(結合性軌道にある電子数-反結合性軌道にある電子数)÷2
    =(10-6)÷2
    =2

点電子構造
 ‥ ‥
:O=O:

よって、二重結合で安定化します(オクッテド則)。
以上より「対になっていない2個という配置になる」というのはπ※2px^(1)、π※2py^(1)のことです(フント・パウリの規則)。

Qヤーンテラー効果について

ヤーンテラー効果について勉強したのですがよく分かりません。もし分かりやすく説明してくれる方がいればよろしくお願いします。

Aベストアンサー

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四面体配位は例が少ないので省略します).例えば,Fe錯体なんかはたいてい八面体配位(配位子が6個)って教わりましたね.しかし,Cu錯体やPt錯体などはなぜか正方形の配位をとります.本来であれば,八面体配位をとったほうがよさそうな感じがしますよね.だって,FeとCuって電子が3つしか違わないから.

ここで,Jahn-Teller効果にもとづく正方晶ひずみという効果が生じてきます.これって何かというと,z軸方向の配位距離(金属と配位子との距離)が伸び,xy方向の配位距離が縮まるのです.つまり,八面体を横からグシャッとつぶして縦にビヨーンと引っ張った感じになります.

このような傾向は,d軌道の電子が多いほど起こりやすくなります.
こうやって,もしもz軸方向の配位距離が無限に伸びてしまったら?そう,z軸方向の配位子はどっかに飛んでいってしまい,結果として正方形状に並んだ4つの配位子だけが残ります.

つまり,「Cu錯体が正方形配位であるのは,八面体がひずんでz軸方向の配位子がなくなったからである」といえましょう.


しかし,「なんでd軌道の電子が増えるとz軸方向に伸びるの?」と思われますよね.これは電子軌道理論で説明できます.
八面体のときは,d軌道は3:2に分裂してますよね.低エネルギーで縮退している3軌道はdxy,dyz,dzxで,高エネルギーのそれはd(xx-yy),dzzです.さて,d軌道の電子が増えると,実は二重および三重に縮退していた軌道が分裂して,2:1:1:1とこま切れになってしまいます.具体的には,z因子を含む軌道(dyz,dzx,dzz)の3つのエネルギーが低下します.(なんでそうなるのかについてはムズカシイので省略させてください)


う~ん,なにやらムズカシイお話になってしまいましたね.
でも,「d軌道の縮退が変化する=配位の形も変化する」ということはなんとなく予想できますよね.これを理論的に説明したのがJahn-Teller効果です.


こんな稚拙な説明でわかっていただけたでしょうか.
もし,「この文章のここがよくわからない」などがありましたら,補足をお願いいたします.また,これ以上の内容についてはShriver(シュライバー)著『無機化学』p.354あたりに書いてあるので,そちらをご覧ください.

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四...続きを読む

Qランタノイド収縮

近日、テストがあるのでネットでランタノイド収縮について調べていたんですが、
『ランタノイドノ原子半径が原子番号の増加に伴ってほぼ減少する現象』
と、あります。
一般に原子の半径は、同一周期においては左から右にいくほど小さくなりますよね?
ランタノイドでも同じように左から右にいくにつれて小さくなると思うのですが、なぜランタノイドの場合だけランタノイド収縮と名前がつくのでしょうか?

あと、"ランタノイド収縮"、"ランタニド収縮" どっちですか?

Aベストアンサー

http://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%B3%E3%82%BF%E3%83%8E%E3%82%A4%E3%83%89
このように小さくなる原因が違うからです。
ちなみにランタノイドでもランタニドでもいいみたいですがここにあるようにランタニドというときはランタンを含まないのが普通です。
なのでランタノイド収縮のほうがいいかと。

Q金属錯体の混成軌道について

現在無機金属の勉強をしております。
少しわからないことがあるので質問させてください。

金属錯体のとる形なのですが
例えばCo3+ではNH3やF-などの配位子によって
d軌道の分裂の度合いが異なり低スピン、高スピンと形を変えて
それによってd2sp3やsp3d2の8面体型をとることは理解できました。
問題はNi2+やPt2+などd8構造をとるものは一般にdsp2の平面四角形型をとるということです。
上の理論から言えば配位子によっては低スピンでdsp2をとるだけでなく、高スピンでsp3の四面体型をとってもいいような気がします。
なぜ平面四角形型のみをとるのでしょうか?
またCo2+はd7構造ですがsp3とsp3d2の形はあるようなのですが、低スピン型でのdsp3構造の平面四角形型はみられません。これも理解しがたいです。

どなたかよろしくお願いします

Aベストアンサー

それはヤン・テラー効果なんです。
説明するには本が一冊書けます。
IBMのチューリッヒの研究員はそれを利用したペロブスカイトの高温超伝導でノーベル賞を取りました。
配位子場理論をしっかり勉強するしかないんですが、それを説明できる先生が「とても少ない」!
私も三十年前にヤン・テラー効果について質問しようとして無機化学の教授に逃げられた、悔しい。

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む


人気Q&Aランキング