これからの季節に親子でハイキング! >>

π-π*遷移に基づく吸収極大波長は溶媒の極性が大きくなると、長波長側へシフトするのでしょうか?短波長側にシフトするという説もあるのですが、どちらが真実なのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

長波長シフトです。



π-π*遷移後の電子状態は、基底状態に比べてより分極しているため(これはわかりますよね?)、基底状態よりも周囲の極性溶媒と相互作用し、安定化するからです(n-π*遷移の場合とちょうど逆です)。

お書きになっている短波長にシフトするという説は、もしかしたら分子構造(あるいは分子を取り囲む特殊な環境)に依存したものではないでしょうか?
    • good
    • 1

 ryumu さん(お久し振りです~)が回答されている様に,一般には『長波長シフト』のようです。



 また,別質問されていた「n-π*遷移」は,溶媒の極性が大きくなると長波長側へシフトするそうです。で,この違いを元に遷移がπ-π*かn-π*かを区別するのに利用される事もあるようです。

 「現代化学シリーズ23 紫外・可視スペクトル 第2版」(C.N.R. Rao 著,中川正澄 訳,東京化学同人)に記載があります(文献もあがっています)。御覧下さい。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q共役の長大=長波長シフト?

芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。
π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。
なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

Aベストアンサー

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系の4つの原子の、π結合にあずかる4つのp軌道について、
それぞれ2個同士で軌道の重なりを考えます;


↑        ─ πab*           ─ πcd*
|      /   \           /   \  
|     /      \        /      \  
┼ 2p─          ─2p 2p─          ─2p
|     \      /        \      /
|      \   /           \   /
|         ─ πab           ─ πcd

   Ca         Cb    Cc         Cd
 (Ca~Cdはそれぞれ炭素原子、πab・πab*はそれぞれCa・Cbのp軌道の
  重なりで生じた結合性軌道・反結合性軌道。πcd・πcd*も同様)

次に、このπab・πab*とπcd・πcd*との間の軌道の重なりを考えます。
このとき、先程のp軌道同士の場合に比べると、軌道の重なりは小さいため、
エネルギー準位の分裂幅も小さくなります(因みに、重なり0→分裂幅0);

                 _π4
E            /       \
↑  πab* ─                ─ πcd*
|           \       /
|                ̄π3

|               _π2
|           /       \
|   πab ─               ─ πcd
|           \       /
                  ̄π1
   Ca         Cb    Cc         Cd

 (元のp軌道は省略、そのエネルギー準位は左端の『┼』で表示)


この結果、Ca~Cdの炭素上にπ1~π4の4つの軌道ができます。
元のp軌道よりエネルギー準位の低いπ1・π2が結合性軌道(π2がHOMO)、
高いπ3・π4が反結合性軌道(π3がLUMO)になります。
(軌道が重なると、「重なる前より安定な軌道」と「重なる前より不安定な軌道」が
 生じますが、このように、必ずしもそれが「結合性軌道と反結合性軌道となる」
 とは限りません;その前に大きな安定化を受けていれば、多少不安定化しても
 結合性軌道のまま、と)

このように考えれば、それぞれのHOMOとLUMOのエネルギー差は、CaとCbの2つの
π電子系で生じた時に比べ、Ca~Cdの4つのπ電子系の方が小さくなることが
理解していただけるのではないかと思います。


<余談>
このようにして共役系が延長していくと、軌道の重なりによる安定化幅はさらに小さく
なっていくため、「軌道」というよりは「電子帯(バンド)」というべきものになります。
また、HOMO-LUMO間のエネルギー差も縮小し、常温で励起が起こるようになります。
これによって、芳香族ポリマーや黒鉛などは電導性が生じているわけです。

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系...続きを読む

Q吸収極大波長のシフト

一般にn-π*遷移の吸収極大波長は溶媒の極性を高めると短波長にシフトするらしいのですが、その理由を教えてください。

Aベストアンサー

 短波長にシフトする=n-π*遷移のエネルギー差が大きい

と言い換えられます(エネルギーと波長は反比例)。

例えば水溶液中にあるカルボニル基C=0の場合、基底状態のn軌道にある電子は、溶媒との水素結合などの相互作用により安定化します。
逆に言えば溶媒の水素結合能が低いと、この安定化が起こらないことになります。

一方、励起状態では、溶媒との相互作用に関与出来る電子がπ*軌道に移っているため、溶媒との相互作用が弱まります。
つまり、励起状態に対する溶媒の効果は低いことになります。

これより、短波長シフト、すなわちn-π*遷移のエネルギー差の増大は、基底状態の安定化によりもたらされる事になります。

Q吸収スペクトルについて

たとえば、ベンゾフェノンのようなものは
nπ*遷移して励起状態で酸素原子がδ+、炭素原子がδ-
になり、吸収スペクトルを測定する際、
溶媒の極性度によってシフトすると思うのですが、

無極性溶媒中より極性溶媒中のほうが、励起状態が安定になり吸収スペクトルが長波長側にシフトすると考えてよいのでしょうか?

Aベストアンサー

>波長側にシフトすると考え
逆です。
無極性溶媒中より極性溶媒中のほうが、長波長側にシフトするので.励起状態がより安定でなる
と考えます。溶媒をかえて測定するときにれいきじょうたいがどのように変化するかを見るのであって.れいき状態(の電子運のエネルギー)がわかっているわけではありませんから。

Q波長と共役について

いろいろ調べていて、『一般に共役系が増えるほど吸収が長波長に・・・』と書いてあるのを良く見かけるのですが、それはなぜでしょうか。
またそれは蛍光でも同じことがいえますか。

Aベストアンサー

光の吸収は、分子軌道のうち、電子がつまったもの(被占軌道)から、電子の入っていないもの(非占軌道)へ、光を吸った電子がたたき上げられる過程で起こります。
軌道のエネルギー差が吸収される光のエネルギーに相当しますから(ほんとはイコールではないけど)、被占軌道と非占軌道のエネルギーが近いほど、吸収される光のエネルギーは小さくなり、波長は伸びます。

さて、一番重要な光の吸収過程は、分子の最も高い被占軌道HOMOから、最も低い非占軌道LUMOへの遷移、HOMO-LUMO遷移です。当然、これが最も長波長の光を吸収します。

さて、共役系分子では、HOMOもLUMOも、パイ軌道になっています。そして、共役系が広がるほど、HOMOは上昇し、LUMOは低下していきます。これがなぜなの?ということを疑問に思われているのかもしれませんが、初等的な量子化学(あるいは振動論でも良いが)を習っていないと、うまい説明がおもいつかないので・・・ご存じでしたら良いですが、まだ習っていないのなら、そういうものなんだ、とでも思ってください。とにかく、電子が自由に動ける空間が広がるほど、HOMOとLUMOは接近していきます。

この極限ともいえるのが、グラファイトです。共役系がほぼ無限となった結果、HOMOとLUMOのギャップは消失し、電子が自由に運動できるようになるため、結果としてグラファイトは電気を流す導体となります。閑話休題。

蛍光も、吸収波長の逆を見ていることになりますから(これもほんとは違うが、ここではおいておきましょう)、吸収と同様、共役が伸びるほど、蛍光波長は長波長となっていきます。

ただし、蛍光のおもしろいところは、吸収が長波長になくとも、長波長の蛍光を出す分子がいろいろあるところです。
なんで?と思われるでしょうが、これはちょっと高等な話になりますから、もう少し進んでから勉強されるとおもしろいかもしれません。

光の吸収は、分子軌道のうち、電子がつまったもの(被占軌道)から、電子の入っていないもの(非占軌道)へ、光を吸った電子がたたき上げられる過程で起こります。
軌道のエネルギー差が吸収される光のエネルギーに相当しますから(ほんとはイコールではないけど)、被占軌道と非占軌道のエネルギーが近いほど、吸収される光のエネルギーは小さくなり、波長は伸びます。

さて、一番重要な光の吸収過程は、分子の最も高い被占軌道HOMOから、最も低い非占軌道LUMOへの遷移、HOMO-LUMO遷移です。当然、これが最も...続きを読む

Q蛍光スペクトル

蛍光スペクトルと励起スペクトルについて教えてください

励起光の波長を変化させて蛍光の波長を固定して測定したものが励起スペクトルで、励起光を固定して蛍光の波長を測定したものが蛍光スペクトルだというのはわかるのですが、2つがどういうものかということがよくわかりません。

教科書のスペクトルと見ると、横軸は波数で蛍光の波長だと、わかるのですが、励起光の波長はどこに表されているのでしょうか?

またどうして励起スペクトルと蛍光スペクトルが鏡像関係にあるのかもわかりません。

あまり難しい言葉や数式は使わずわかりやすく回答してもらえれば幸いです。

Aベストアンサー

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギーの低い状態へ移動する)を経て励起状態振動基底状態へ移動します。そして、図では緑の矢印で示されている蛍光が発光します。

質問者様のおっしゃる励起スペクトルはこの青色の矢印の波長を変えながら緑色の矢印すべてひっくるめた蛍光全体の強度を測ります。このとき、電子励起状態の振動基底状態や振動励起状態(図では太い横線が各電子状態の振動基底状態を示し、その上の細い横線がその電子状態の振動励起状態を示しています。)へ励起されますので、励起光の波長は電子励起状態の各振動状態のエネルギーに対応したものとなります。溶液などでは、振動励起状態へ励起してもすぐにその電子状態の振動基底状態へ緩和されますので、緑の矢印全体の強度というのは、励起された分子の数に比例します。つまり、励起スペクトルは分子の吸収スペクトルに比例したようなスペクトルが得られるわけです。(もちろん、いろいろ例外はありますが)

さて一方、質問者様のおっしゃる蛍光スペクトルは緑色の矢印をさらに分光器などで分散させて矢印一本一本を別々の波長として観測するスペクトルです。つまり、波長は電子励起状態の振動基底状態から電子基底状態の振動励起状態のエネルギーに対応したものとなります。

蛍光スペクトルにおいて、励起光の波長がわからないと言うことですが、溶液などでは励起分子はすぐに電子励起振動基底状態へ緩和しますので、励起光の波長を変えて励起する分子の振動状態を変えても、蛍光スペクトルはすべて電子励起振動基底状態からのもので、波長とその強度比は変わりません(励起スペクトルのように全体の強度はかわりますが)。このような場合、励起光の波長を書かないことが多いです。

図でもわかるように、励起光の波長と蛍光発光の波長はは電子励起振動基底状態のエネルギーをはさんで、励起光は電子励起状態の振動エネルギーだけ高いエネルギー(短い波長)になり蛍光は電子基底状態の振動エネルギーだけ引いエネルギー(長い波長)になり、それぞれの振動エネルギー構造が似ていれば、鏡像のような形になることがわかります。

以上、「励起光が書いていない」ということから類推して、すべて溶液の蛍光測定と仮定してお答えしました。気体や分子線を使ったLIFではちょっと話がかわってきますので、その点はご留意ください。

参考URL:http://www.jp.jobinyvon.horiba.com/product_j/spex/principle/index.htm#01

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギ...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

QNMRが(>o<)…

 とにかくNMRがわけ分かりません。例えば、どういうときに、ダブレットになるのか、ダブルダブレットになるのかとか、なんか2Hとか6Hとか書いてあってそれが何なのかとか、とにかく基本的なことから理解できてません。
 なにかNMRを理解するためのアドバイスや基本的な事項をなんでもいいから教えて下さい。又はNMRに関して詳しく書いてあるサイトを紹介してくださっても結構です。

Aベストアンサー

NMRとは核磁気共鳴(Nuclear Magnetic Resonance)の略で、特定の原子核に磁場の存在下に電磁波を当てると、その核の環境に応じた周波数(共鳴周波数)で電磁波の吸収が起こる現象のことです。

とこんな堅苦しいことを書いても理解しづらいと思うので、1H-NMRについて簡単に説明すると、
まず測定した物質内に水素原子が存在すると、その環境に応じて吸収(ピーク)が現れます。
同じ環境の水素(CH3の3つの水素など)はすべて同じ位置に出るし、違う環境の水素は違う位置に出ます。
この位置というのは、標準物質との差で表します。
共鳴周波数の標準物質からのずれを当てている磁場の周波数で割ったもので、だいたい100万分の1から10万分の1程度になることが多いのでppm単位で表します。標準物質をテトラメチルシラン(TMS)にするとほとんどの有機物の水素は0~10ppmの範囲内に出ます。
違う環境の水素同士が立体的に近い位置にある場合、相互作用をします。これをカップリングと呼びます。ビシナル(隣り合う炭素についた水素の関係)の場合が多いですが、ジェミナル(同じ炭素についた水素同士)でもお互いの環境が違う場合はカップリングするし、それ以外でもカップリングする場合がありますが、詳しくは割愛します。
カップリングした場合、その水素のピークは相手の等価な水素の数+1の本数に分裂します。
例えば酢酸エチル(CH3-CO-O-CH2-CH3)の場合、右端のメチルの水素は隣にメチレンがあるのでカップリングし、メチレン水素は2個なので3本に分裂します。
メチレンの水素も同じように右端のメチルとカップリングするわけですから、4本に分裂します。
カップリングする相手の水素が1個の場合は2本でこれをダブレットと呼びます。3本はトリプレット、4本はカルテット。
上の酢酸エチルの左端のメチルは隣の炭素に水素がついてないのでカップリングせず1本(シングレット)に出ます。
n-プロパン(CH3-CH2-CH3)の場合、中央のメチレンは隣に水素が6個あり、それが全て等価なので7本(セプテット)になります。
カップリングする水素が2個あってその2個が等価でない場合は両方とダブレットを形成するのでダブルダブレットとなります。
例を挙げると、CHX2-CHY-CHZ2のようなものです。
この物質の中央の炭素についた水素は、等価でない両端の水素とそれぞれカップリングし、ダブルダブレットになります。

次に1H-NMRはピークの面積がその水素の数に比例します。測定時はそのピークの積分比を取ることにより、そのピークの水素の数を求めることが出来ます。酢酸エチル(CH3-CO-O-CH2-CH3)では左から順に3:2:3の比になります。
この等価な水素の数を2Hとか3Hとかと書きます。

それから上でカップリングについて書きましたが、分裂する幅を結合定数と呼び、その幅の周波数(Hz)で表します。
互いにカップリングしている水素同士の結合定数は同じ値になります。

結構長くなってしまいましたが、これは基本の基本でしかないので、機器分析の本などを読んで詳しく勉強した方がいいと思います。

参考URL:http://www.agr.hokudai.ac.jp/ms-nmr/assign/index.htm

NMRとは核磁気共鳴(Nuclear Magnetic Resonance)の略で、特定の原子核に磁場の存在下に電磁波を当てると、その核の環境に応じた周波数(共鳴周波数)で電磁波の吸収が起こる現象のことです。

とこんな堅苦しいことを書いても理解しづらいと思うので、1H-NMRについて簡単に説明すると、
まず測定した物質内に水素原子が存在すると、その環境に応じて吸収(ピーク)が現れます。
同じ環境の水素(CH3の3つの水素など)はすべて同じ位置に出るし、違う環境の水素は違う位置に出ます。
この位置というのは、...続きを読む

QプロトンNMRの高磁場シフト、低磁場シフトについて

 化学論文を読んでいて、包接錯体形成によりあるNMRスペクトルが高磁場シフトや低磁場シフトをしているものがありました。
 色々調べていて、溶媒を変えるなどによって環境が変わったり、相互作用があると高磁場シフトや低磁場シフトが起こるということはなんとなく分かったのですが、同じ相互作用でも高磁場シフトしているものと低磁場シフトしているものがあり、原理の部分がいまいち分かりません。
 どういうときに高磁場シフトもしくは低磁場シフトするのかを教えてもらえるとうれしいです。よろしくお願いします。

Aベストアンサー

当たり前のことですが、化学シフトはプロトンの周辺の電子密度が高ければ高磁場側になり、電子密度が低ければ低磁場側になります。
包接錯体形成によって、プロトンの周囲の電子密度が低下すれば低磁場シフトしますし、増大すれば高磁場シフトをすることになります。
つまり、錯体形成による電子密度の変化を反映しているということになり、それは錯形成の相手の原子の種類や電子密度などの影響を受けます。また、不飽和結合があれば、環電流の影響も考えられます。

Qn-π遷移が禁制遷移の理由について

n-π遷移は非共有電子対の一つの電子が遷移する現象だと思いますが、この遷移が禁制遷移となる理由をどのように考えればよろしいでしょうか?

Aベストアンサー

あんまり詳しくはないのですが、考えられる説明の一つは、
「n軌道」と「π*」(πではない)は波動関数が直行しているはずで、つまり遷移確率を計算すると(間に挟まる演算子に依存しますが、基本的には)ゼロになっちゃう、からなのだと思います。
でも実際にはnにもπ*にも「振動・回転」成分による「摂動」があるため、その分で遷移確率がゼロにならないのだと考えられます。

Q芳香環との静電的な相互作用について

アミノ酸の研究をしている理系大学生です
芳香環の静電的な相互作用のとりえ方について分からない点があります

ベンゼン環は電離、分極も生じておらず、疎水性が高い分子です
疎水性が高いといことは水溶媒においても水分子と水素結合を介さないはずです

しかし、ベンゼン環は陽イオンなどとπ-カチオン相互作用や、π-π相互作用を取り得ることが分かりました

どちらも静電的な相互作用のはずなのに一方はとりえて、他方はとりえないのはなぜでしょうか

ベンゼン環は分極は生じていないですが、π電子雲と呼ばれる電子がベンゼン環の上下方向に存在していて、この電子雲が関係しているのだろうと思うのですが、よくわかりません

詳しく教えていただけないでしょうか

Aベストアンサー

基本的には、質問者さんがお考えになっている通り、ベンゼン環や他の芳香環は疎水性が高いものです。
たとえば、ベンゼンを水に混ぜ込んだ場合、相分離してしまってベンゼンと水はお互い弾きあうでしょう。これは、水は水同士で相互作用(水素結合)した方がはるかにハッピーなので、あえてベンゼンを中に入れたがらないためです。質問者さんが描かれている通り、ベンゼンと水の相互作用(水素結合なり双極子相互作用なり分散力なり・・・)は弱いため、水分子間のネットワークを壊してまでベンゼンとなじむ必然性がありません。
この現象を、我々は疎水性相互作用と呼びます。実際に相互作用の大半を担っているのは、水同士の強い相互作用であって、別に疎水性化合物同士で強い相互作用をするということではありません。
ようするに、水が大量にいる(溶媒のように)なっている場合、こうした非常に弱い、芳香環と水(あるいは他のプロトン源)の相互作用は無視しうるほど弱いものです。ですが、有機溶媒の中、タンパク質分子の中や、高分子の網目の中、あるいは結晶の中のように、水がほとんど存在しない状況にあるベンゼン環はどうでしょうか。
質問者さんが書かれているとおり、芳香環には上下にパイ電子があります。これは電子というくらいなので、正電荷と相互作用します。真上に近い位置にプロトンなりカチオンなりを置いた場合、静電的に引き合うでしょう。実際に、ベンゼン環の真ん中は負に帯電していることは知られており、ちょうど良い位置に存在する正電荷と引力相互作用を生じ舞ます。アルコールなどの水素原子は正に分極しているため、正電荷よりは程度は弱いでしょうが、ベンゼン環と静電相互作用しうるでしょう。
なお、この手の現象で有名なものに、アントラセンなどのアセン類の結晶構造があります。隣の分子のC-H結合が、別の分子のパイ電子系に向かって位置する形で結晶化します。これは、C-H結合がわずかにH+に分極するため、C-H-パイ相互作用を起こすからです。
なお、パイ-パイ相互作用はまた別の話です。質問者さんはベンゼンの水素結合の例で出していますが、間違いです。これは水素結合のような通常の静電相互作用とは違うものとされていて、誘起双極子間の相互作用(いわゆる、分散力、ロンドン力と呼ばれるもの)として説明されています。ちょっとわかりにくいのですが、これもパイ電子に起因しています。隣り合う二個のベンゼン環を考えた場合、パイ電子の分布は瞬間ごとにゆらいでいます。一個のベンゼン環のパイ電子のゆらぎは、隣のベンゼン環のパイ電子分布に影響し、結果として瞬間的に電荷同士の引き合いが生じます。これが延々と繰り返されて、両者の間に引力が生じるというものです。
なお、上述したように、普通の芳香環を混ぜた場合は、C-H-パイ相互作用する形、ようするに両者は積みかさらない形が一般には有利ですが、芳香環が大きくなったり、何かむりくり積み重なるような工夫をすると、パイ-パイ相互作用した構造になります。

基本的には、質問者さんがお考えになっている通り、ベンゼン環や他の芳香環は疎水性が高いものです。
たとえば、ベンゼンを水に混ぜ込んだ場合、相分離してしまってベンゼンと水はお互い弾きあうでしょう。これは、水は水同士で相互作用(水素結合)した方がはるかにハッピーなので、あえてベンゼンを中に入れたがらないためです。質問者さんが描かれている通り、ベンゼンと水の相互作用(水素結合なり双極子相互作用なり分散力なり・・・)は弱いため、水分子間のネットワークを壊してまでベンゼンとなじむ必然性...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング