
No.2ベストアンサー
- 回答日時:
こんばんは。
ちょっと待ってください。
「3次元空間にベクトルAが一本だけある」
と書かれていますが、
ベクトルというのは、向きと大きさ、言い換えれば、始点と終点の関係があるだけであって、
「空間にベクトルがある」
という言葉自体がおかしいです。
そして、
「ベクトルAの座標がわかっている時」
と書かれていますが、
ベクトルには座標というものは存在しません。
成分があるだけです。(上記で言った、向きと大きさ(始点と終点の関係)のことです。)
とはいえ、
成分が(a1、b1、c1)という3次元ベクトルがあるとしましょうか。
それに垂直なベクトルの成分を(a2、b2、c2)と置きます。
このとき、両者の内積はゼロになるわけですから、
a1,b1,c1,a2、b2、c2には、次の関係が成り立ちます。
内積 = a1・a2 + b1・b2 + c1・c2 = 0
>>>ベクトルAに直交するベクトルの座標を、どれか一つだけ計算にて求めることは出来るのでしょうか?
上の式を満たすようなベクトルを作ればよいだけです。
たとえば、b2とc2をゼロにしちゃえば、いとも簡単に1つ作れます。
以上、ご参考になりましたら。
>「空間にベクトルがある」
>という言葉自体がおかしいです。
>ベクトルには座標というものは存在しません。
>成分があるだけです。(上記で言った、向きと大きさ(始点と終点の関係)のことです。)
数学を理解されている方が私の質問を読んだ時に、一瞬思考が止まって「?」となったかもしれなかったのでしょうか。...すいませんでした。
ご回答を頂けたおかげで疑問を解決することができました。
ありがとうございました。
No.1
- 回答日時:
それは簡単にできますよ。
たとえば、A=(a1,a2,a3)
X=(x1,x2,x3)
とします。
X・A=0ですから、
a1x1+a2x2+a3x3=0
を満たすX=(x1,x2,x3)がAに直交します。
もっと詳しく言えば、a1≠0としたとき、
x2,x3を任意に与えて、x1=(-a2x2-a3x3)/a1とすればよいですね。
> もっと詳しく言えば、a1≠0としたとき、
> x2,x3を任意に与えて、x1=(-a2x2-a3x3)/a1とすればよいですね。
すばやいご回答、ありがとうございました。
内積な関係の式を変形して求めればよかったのですね。
本当にありがとうございました。助かりました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
n次元ベクトルの外積の定義
-
微積分の記号δ、d、Δ、∂の違い
-
行列とベクトルの表記の仕方に...
-
「ノルム、絶対値、長さ」の違...
-
2つに直交する単位ベクトル
-
平面の交線の方程式
-
「任意」ってどういう意味?
-
座標系の奥(手前)方向の書き方
-
ナブラ ラプラシアン
-
なぜ2乗するのか
-
2次元における外積について
-
平面のベクトル内積=0で垂直...
-
一次独立だけど、基底にならな...
-
複素数の絶対値の性質について
-
一本のベクトルに直交するベク...
-
行列式が1とはどういう意味です...
-
高校数学の範囲外の知識は大学...
-
縦ベクトルと横ベクトルの違い...
-
ベクトルについて
-
Aはn次正方行列とする。零行列...
おすすめ情報