女子の「頭皮」のお悩み解決の選択肢とは?

いつもお世話になっております。
さっそくですがP型GaNだけではないのですが、深い不純物準位をもった半導体はどうして高抵抗といえるのでしょうか?
ご教授ください。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

電気回路ででてくる抵抗 ∝ 室温でできるアクセプタのできにくさ



抵抗値 ∝ アクセプタ密度 です。

電荷を運ぶキャリア、ホールが少ないほど、電流が流れにくい、
つまり抵抗値が高いということです。
    • good
    • 0
この回答へのお礼

なるほど!大変わかりやすい回答ありがとうございました!

お礼日時:2009/06/29 11:17

エネルギー準位が深い場合、室温でもドープした不純物の全てがホールを作らないためです。



GaNの場合Mgをドープするのが一般的ですが、活性化率は僅か1%程度だったと思います。
ですから、10^19cm-3でドープしても、ホール密度10^17cm-3しか得られません。

Siなど一般の半導体の場合、5meV程度の浅い不純物が使えるので、その場合の活性化率は95%(?)といった具合になります。
    • good
    • 0
この回答へのお礼

お答えくださってありがとうございます。
ここでの抵抗という意味は電気回路ででてくる抵抗の意味ではなく、室温でできるアクセプタのできにくさを意味しているのでしょうか?
変な質問ですいません^^;

お礼日時:2009/06/28 18:57

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QP型半導体のキャリア移動度??

N型のキャリア移動度がどうしてP型半導体のキャリア移動度
よりおおきいのでしょう?
バンドギャップの違いからなのでしょうか?
御教えいただけると幸いです。

Aベストアンサー

こんばんは。
半導体デバイス・プロセスの技術開発業務経験者です。

「N型のキャリア移動度がどうしてP型半導体のキャリア移動度よりおおきいのでしょう?」
というよりは、
「P型のキャリア移動度がどうしてN型半導体のキャリア移動度より小さいのでしょう?」
という話になります。


N型半導体のキャリアは、文字通り電子ですが、
P型半導体のキャリアである「ホール」(正孔)は、おとぎ話の登場人物です。
実際に動くのは、ホールではなく、あくまでも電子です。
したがって、N型半導体とP型半導体を対称に考えることなど、そもそもできないのです。


15パズルって、やったことないですか?
http://weblogjapan.com/img_d/2007/05/23/3.jpg
15個の板を電子、1箇所空いているところをホールだと思ってください。
狙ったところまで「ホール」(空き)を移動させるには、周りの電子(板)を色々と動かさないといけません。
それがP型半導体です。


N型半導体は、15パズルの板と空きを反転させたもの、すなわち、板が1枚だけで、空いたところが15箇所あるパズルです。
狙ったところまで電子を移動させるのは、いとも簡単なことです。

そういうわけで、ホールの移動度は電子の移動度より小さくなっているのです。


以上、ご参考になりましたら。

こんばんは。
半導体デバイス・プロセスの技術開発業務経験者です。

「N型のキャリア移動度がどうしてP型半導体のキャリア移動度よりおおきいのでしょう?」
というよりは、
「P型のキャリア移動度がどうしてN型半導体のキャリア移動度より小さいのでしょう?」
という話になります。


N型半導体のキャリアは、文字通り電子ですが、
P型半導体のキャリアである「ホール」(正孔)は、おとぎ話の登場人物です。
実際に動くのは、ホールではなく、あくまでも電子です。
したがって、N型半導体と...続きを読む

Q自己補償効果について

2-6族化合物半導体材料について勉強しているのですが、上記した「自己補償効果」というものがいまいちわかりません。
 例えば常にP型を示す材料の場合、ドーピングによって補償が起き、n型ドーパントをドープしてもなかなかn型にならないなどです。
 一応、半導体工学を専攻していますので基礎知識はありますのでご回答お願いします。
よろしくおねがいします。

Aベストアンサー

 半導体工学を御専攻なら、これくらいは・・・。

 バンド構造を考えて下さい。ドナーとアクセプターってどの位置にできますか?
 これだけ言えば、わかると思います。

Q半導体の縮退って?

半導体の参考書など読んでいるとよく、「縮退」という言葉が出てきます。しかも、どうやらいろいろなケースで使われているようですが、いまいちよくわかりません。

例えば、
・フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
・スピンが上下二種類埋まっているとき。

に関しては分かったのですが、縮退の一般的意味と共に、他のケースについて、どういったときに縮退というのか具体的に教えていただけませんか?
よろしくお願いします。

Aベストアンサー

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子統計で扱わないといけない(低温)ときを「縮退している」といいます.
低温かどうかは考えている系のもつ特徴的なエネルギー(例えば,フェルミエネルギー)
を温度に換算したもの(フェルミ温度 T_F)との関連で決まります.
T << T_F なら縮退しています.
縮退ならフェルミ分布関数の分母にある1を無視できないし,
非縮退なら無視してよい(ボルツマン分布になる)というわけです.
sunny_day さんの
> フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
は確かにそのとおりですが,これは縮退のもともとの定義ではありません.
フェルミ準位の位置の結果,そうなっているということです.
なお,フェルミ準位が禁制帯内にあっても,バンド端とのエネルギー差によっては
縮退していることもありえます.

(3) 分子遺伝学でも縮退という用語があります.
1種類のアミノ酸に対応し複数の遺伝子コドンが存在するときにこのように言うようです.
ここら辺は素人なのであまり自信がありません.

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子...続きを読む


人気Q&Aランキング