
(e^x)×(cosx)の部分積分を解く問題なのですが、
I=∫(e^x)×(cosx)dx
=(e^x)(cosx)+∫(e^x)(sinx)dx
=(e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dx
∴I=1/2(e^x)(cosx+sinx)+C
と、模範解答に書いてあったのですが、
(e^x)(cosx)+(e^x)(sinx)-∫(e^x)(cosx)dxが1/2(e^x)(cosx+sinx)+Cになる、という所がいまいちわかりません。
初歩的な質問で申し訳ないのですが、教えて頂けたら有り難いです。
あと、似た問題で(e^x)(sinx)の積分を解く問題もあったのですが同じように1/2(e^x)(-cosx+sinx)+Cという形になったりするのでしょうか。

No.5
- 回答日時:
デカルト座標というのは、高校で習うようなxy直交座標のことです。
極座標というのは、それを(r,θ)で表すようなものです。(実はこれも直交なのですが…)
テストでやったものがよくわからないですが、たぶん一緒だと思います。オイラーの公式から
----------------------------------
e^(ix) = cos(x) + isin(x)…(1)
e^(-ix) = cos(-x)+ isin(-x)
= cos(x) - isin(x)…(2)
------------------------------------
です。
[(1)+(2)]/2から
○cosx = e^(ix) + e^(-ix) / 2
[(1)-(2)]/2iから
○sinx = e^(ix) - e^(-ix) / 2i
です。
フツーはこうやって導いてきますが、よく使うので導くまでもなく皆さん暗記してるようです。
質問の意味がうまく汲み取れなかったのですが、ご質問の答えになってるでしょうか…??
デカルト座標とはxy座標のことなのですね!知識不足ですみません…。
分かりづらい質問に丁寧に答えて下さってありがとうございます。
その通りです。オイラーの式から導き出す方法です。同じようなので安心しました。お礼が遅くなってすみませんでした。ご回答ありがとうございます。

No.4
- 回答日時:
No.3さんがご覧になってないようなので、とりあえず私が補足を回答しておきますね。
おっしゃる通りオイラーの公式です。
e^ix=cosx+isinx
という式が成り立つ式です。
テイラー展開とかで軽く証明されることが多いです。
複素平面上だとe^ixが回転を表すので、極座標とデカルト座標の関係みたいな感じで簡単にイメージできます。
これを使うと
sin x = (e^x - e^(-x))/(2i),
cos x = (e^x + e^(-x))/2
が導けます。
実はこれは理系には"常識"レベルのことでして、暗記ものです。
(もちろん私が高校生の時は知りませんでした)
このオイラーの公式を使うと
e^(1+i)x=(e^x)(e^ix)=(e^x)(cosx+isinx)
になるということですね。
この回答への補足
理系では常識レベルなのですね。全く知りませんでした。理系の大学に入ってオイラーやら三角関数やらを初めて見た人間なので残念ながら複素平面の入り口までしか理解できていません(デカルト座標がわかりませんでした)
テストで出てきた公式を使ってsinxとcosxを指数関数で表しなさい(複素数と共役複素数から2つの値を求めるものです)の答えに似ていたので、それと同等のものだと認識しているのですがあっているのでしょうか。分かりづらい説明ですみません。
重ね重ねご面倒ですが教えて頂けたら幸いです。
No.3
- 回答日時:
イメージなら
sin x = (e^x - e^(-x))/(2i),
cos x = (e^x + e^(-x))/2
と指数関数で表すのが簡単.
もっと手を抜くなら
∫ e^(1+i)x dx = e^(1+i)x/(1+i) = e^x (cos x + sin x)/2 + i e^x (sin x - cos x)/2
と
e^(1+i)x = e^x (cos x + i sin x) = e^x cos x + i e^x sin x
の両辺を比較する, って方法もある.
この回答への補足
ご回答ありがとうございます。
えっと、sin x = (e^x - e^(-x))/(2i)、e^(1+i)x 、とありますが、これはオイラーの式を使って解く方法なのでしょうか?
…すみません、e^xで表される指数関数が何たるか分かっていません。
間違っていたらすみません。

No.2
- 回答日時:
No.1さんが既に答えてくれてますね。
ちなみになんですが、微分してから解くのもよく使われる方法です。
複雑なものになると計算ミスしやすいので、こちらの方を知っとくと便利なこともあります。
((e^x)*(cosx))'=-(e^x)*(sinx)+(e^x)*(cosx)・・・(1)
((e^x)*(sinx))'=(e^x)*(sinx)+(e^x)*(cosx)・・・(2)
((1)+(2))/2から
(e^x)*(cosx)={ ((e^x)*(sinx))' + ((e^x)*(cosx))' }/2
左辺の積分が、求めたいヤツです。
なので、右辺を積分してやったらご質問の答えが導けます。
同様に、(e^x)(sinx)の積分も考えられます。
(1/2)*(e^x)*(sinx-cosx)になるかと思います。
ご回答ありがとうございます!微分してから解く方法は知りませんでした。微分の方法を知ることが出来て、さらに式の組み立ての意味が分かりました。わかりやすい説明、ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
数学の質問です。 0≦θ<2πのとき...
-
1+cosθをみると何か変形ができ...
-
数学の問題です。 辺AB、BC、 C...
-
cos(2/5)πの値は?
-
x=rcosθ の微分
-
eの2πi乗は1になってしまうんで...
-
数3です。 第n項が次の式で表さ...
-
y=cos3xの逆関数はいくらですか?
-
cos180°=-1に納得できません
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
三角関数と極限値の問題
-
【数字】 d(cosθ)というのと、d...
-
4辺の長さが違う四角形の内角...
-
高校数学 三角関数
-
|1+e^(-iωt)|の求め方
-
計算の仕方がわかりません
-
cos2x=cosx ってなにを聞かれ...
-
明日までの宿題なので、速くお...
-
偏微分について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
数3です。 第n項が次の式で表さ...
-
三角関数
-
cos(2/5)πの値は?
-
数学の質問です。 0≦θ<2πのとき...
-
長方形窓の立体角投射率
-
数列の極限でわからない問題
-
高校数学 三角関数
-
双極子モーメントの別解
-
cos2x=cosx ってなにを聞かれ...
-
フーリエ級数|cosx|
-
三角関数
-
cos(arcsinx) = sqrt(1-xx)
-
三角関数で、
-
加法定理
-
cos^3tを微分するときはどうや...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
おすすめ情報