
分からない問題が出てきたのでまた質問させていただきます。
半径a、bで長さLの同軸円筒コンデンサにおいて内円筒に+Q、外円筒に-Qを与えた場合について(外円筒は接地)
1、電界を求め、両円筒間の電位差Vを求めよ。
2、Qが一定の時外円筒の半径をb~cに変化させる場合になされる仕事を計算せよ
3、電位φが一定の時b~cに変化させる場合になされる仕事を計算せよ
1、半径rの円柱をとってガウスの法則を適用
a<r<bの時Q(r)=Q
よってE(r)=Q/(2πεrL)
ここから積分によってVを求めたいのですが”外円筒を接地(→φ(b)=0)”という条件をどう用いればいいかが分かりません。
2、3に関してはまずコンデンサの静電容量Cを求めて静電エネルギーの変化に着目すると思うのですがどうやればいいのかがよく分かりません。
よろしくおねがいします。
No.1ベストアンサー
- 回答日時:
(1)aは内円筒の外半径?bは外円筒の内半径?
(2)長さLが有限のため、正確に求めるのは大変ですね。
半径a,bに比べて、Lは十分に長いと仮定してよい問題ですか。
よければ、あなたのやり方でOKです。
(3)接地とは、電位の基準点とするということです。
ようするに外円筒の電位を0とするだけです。
-dV/dr=E から V=-∫(a~r)Edr+Const
定数ConstをVb=0となるように定めればよい。
(4)静電容量は、与えた電荷をQ、電極間の電位差をVとして、
C=Q/Vで求めます。
(5)変化させる前のコンデンサの蓄積されるエネルギーは
求められますね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 電磁気 肉厚が極めて薄く、無限に長い半径aの円筒状導体に定常電流が一様に流れ ている。 アンペールの
- 電磁気です この問題の電場を求める方法が分かりません ご教示ください z 軸を中心軸として半径 a
- 図のように、内半径aの中空の円筒が、その中心軸が水平になるように固定されており、その中で、 質量 M
- 内半径α, 外半径b, 長さlの同軸円筒導体の間に導電率σの媒質を充填したとき,外筒から内筒に向けて
- 無限に長い導体円筒の問題です。 (1)この導体円筒の単位あたりの静電容量を求めよ。 (2)内外の導体
- 物理の問題
- 誘電率ε_0の真空中に、2つの円筒極板AとBがあり、 A の外半径はa, Bの内半径はbである (a
- 導体間の抵抗
- 内半径b,外半径cの円筒導体の中に半径aの円柱導体が入っている。それぞれの導体に逆向きの電流が流れて
- スペースコロニーを作るとしたら。
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報