在宅ワークのリアルをベテランとビギナーにインタビュー>>

分からない問題が出てきたのでまた質問させていただきます。

半径a、bで長さLの同軸円筒コンデンサにおいて内円筒に+Q、外円筒に-Qを与えた場合について(外円筒は接地)
1、電界を求め、両円筒間の電位差Vを求めよ。
2、Qが一定の時外円筒の半径をb~cに変化させる場合になされる仕事を計算せよ
3、電位φが一定の時b~cに変化させる場合になされる仕事を計算せよ

1、半径rの円柱をとってガウスの法則を適用
a<r<bの時Q(r)=Q
よってE(r)=Q/(2πεrL)
ここから積分によってVを求めたいのですが”外円筒を接地(→φ(b)=0)”という条件をどう用いればいいかが分かりません。

2、3に関してはまずコンデンサの静電容量Cを求めて静電エネルギーの変化に着目すると思うのですがどうやればいいのかがよく分かりません。

よろしくおねがいします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

(1)aは内円筒の外半径?bは外円筒の内半径?


(2)長さLが有限のため、正確に求めるのは大変ですね。
半径a,bに比べて、Lは十分に長いと仮定してよい問題ですか。
よければ、あなたのやり方でOKです。
(3)接地とは、電位の基準点とするということです。
 ようするに外円筒の電位を0とするだけです。
 -dV/dr=E から V=-∫(a~r)Edr+Const
 定数ConstをVb=0となるように定めればよい。
(4)静電容量は、与えた電荷をQ、電極間の電位差をVとして、
  C=Q/Vで求めます。
(5)変化させる前のコンデンサの蓄積されるエネルギーは
 求められますね。
 
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電磁気の問題(円筒形のコンデンサ)

図のような断面をもつ内径a外形b長さLの円筒形コンデンサがある。

いま電極の単位長さあたりλの電荷を与えたものとし、次の問いに答えなさい

(1)電極間(a<b<c)の電場の大きさEを求めよ
(2)電極間の電位差Vを求めよ
(3)このコンデンサーの静電容量を求めよ

E=λ/2πεr
V=λ/2πε*log(b/a)

となったのですが静電容量がわかりません

どなたか教えてください!

Aベストアンサー

電荷量Q,そのときの電荷量Vがわかれば
C=Q/V
からCが得られます。

単位長さ当たりλの電荷を与えたときの電位差Vがわかったのですから電荷Qを求めればよいのです。
コンデンサの長さLであることからこれはすぐにわかるでしょう。

Q円筒コンデンサの電界の求め方について。

円筒コンデンサの電界の求め方について、分からないことがあります。問題は以下のようなものです。(直近で同じ問題を投稿された方がいらっしゃいましたが、電界に関する質問ですのでご容赦ください。)

問題:長さ1mについて500pFの静電容量を有する同心円筒コンデンサ(同軸円筒コンデンサ)で10kVの電位差を加えたときに電界の大きさが3kV/mmを超えないようにしたい。円筒の大きさを求めよ。(間は真空です。)

学校の説明では、

ガウスの法則を使い、E=Q/2πRε。この式に、Q=CV=5OO*10^-12*10*10^3を代入し、さらに、E=3*10^6も代入しRを求めます。

ここで、質問なのですが、なぜこの式を解くと、内半径が求まるのでしょうか?私は、これと同じとき方をしたのですが、外半径(中心から外側の円筒までの距離)を求めるものだと思っていて間違いました。

「電界の大きさが3kV/mm」とありますが、これはどこの電界の強さを指しているのでしょうか?電界の大きさは、内側(内円筒の表面)と外側(外円筒の表面)では、面積も違うし(電荷の密度が違う)、中心からの距離も違うので電界の大きさは違うとおもうのですが・・・。なぜ、内側と判断できて、上記のように解けるのでしょうか?

お力を貸してください。よろしくお願いします。

円筒コンデンサの電界の求め方について、分からないことがあります。問題は以下のようなものです。(直近で同じ問題を投稿された方がいらっしゃいましたが、電界に関する質問ですのでご容赦ください。)

問題:長さ1mについて500pFの静電容量を有する同心円筒コンデンサ(同軸円筒コンデンサ)で10kVの電位差を加えたときに電界の大きさが3kV/mmを超えないようにしたい。円筒の大きさを求めよ。(間は真空です。)

学校の説明では、

ガウスの法則を使い、E=Q/2πRε。この式に、Q=CV=5OO*1...続きを読む

Aベストアンサー

「電界の大きさが3kV/mm」
「3kV/mmを超えないようにしたい」にですから、電界がもっとも強いところで3kV/mmになる条件を見つけることになります。
同軸円筒上の電極間では、ガウスの法則から、電界の強さはrに反比例ですので、rがもっとも小さいところである内筒表面で最も電界の強さが大きくなります。

Q同軸円筒コンデンサについて

今、学校でコンデンサについて学んでいるんですが、同軸円筒コンデンサについてよく分からないので、質問させていただきます。

内半径a、外半径b、長さl(>>a,b)の同軸円筒コンデンサがあり、両電極間は中心軸を含む平面で2等分されていて、それぞれ誘電率ε1、ε2の誘電体で満たされています。外側電極は接地、内側導体に電荷Qを与えるとき、このコンデンサの静電容量を求めるにはどうしたら良いんでしょうか??

Aベストアンサー

途中で電位を仮定するほうが計算しやすいかと
1.同軸構造(とガウスの法則から)電界強度∝1/r
2.中心導体の電位を仮定すると、同軸内の電界強度が決まり、ガウスの法則から中心導体の電荷Q'(=Q)を計算できる
3.Q'とVから静電容量を計算
という手順になるかと思います。

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q二つの誘電体からなる円筒の静電容量について

下図のような二つの誘電体からなる円筒形コンデンサーの
静電容量を求める際の式展開について質問させてください。

手持ちの本では
E(R) = k / 2πR (kは不定定数)
として議論を進めています。

しかし、誘電率の大小によって電場は強弱は変化するわけですので
電場はRのみの関数であるというのは自明とは思えません。

どのように考えればよいでしょうか?
ご教授ください。

Aベストアンサー

ANO8をもう少し丁寧に説明してみます。

円筒形電極に電荷がある場合、それに接する誘電体の表面には、
反対の電荷(分極)が発生します。

円筒形電極の電荷の面積密度をρ(θ)とすると(θは円筒座標の角度)、
誘電体表面には面積密度 -α(θ)ρ(θ) が発生し、
金属電極と誘電体の境界には正味の電荷密度 ρ'(θ)=ρ(θ)(1-α(θ)) の電荷が貯まります。
#ρ(θ)とα(θ)はθの関数の意味

(1-α(θ)) = 1/εr(θ) なので(εr(θ): 比誘電率)

ρ'(θ)=ρ(θ)(1-α(θ)) = ρ(θ)/εr(θ)

金属、誘電体境界面内に広がる電荷ρ'(θ)は反発しあって、
円筒形の境界面に「均等に」広がろうとします。なので
ρ'(θ) とみなしてよいので境界面での電界は

E(θ)=ρ(θ)/ε0εr(θ)=ρ'(θ)/ε0=一定

誘電体内には電荷はないので、真空と同様に扱って
差し支えありません。

するとこの問題は

円筒形上の真空に、円筒の表面に電荷が密度 ρ'(θ) で分布した
状況と同じなので、電場は円筒の軸から放射状に広がる
軸対称の形になります。

ガウスの定理から E が R に反比例することは明らかです。

ANO8をもう少し丁寧に説明してみます。

円筒形電極に電荷がある場合、それに接する誘電体の表面には、
反対の電荷(分極)が発生します。

円筒形電極の電荷の面積密度をρ(θ)とすると(θは円筒座標の角度)、
誘電体表面には面積密度 -α(θ)ρ(θ) が発生し、
金属電極と誘電体の境界には正味の電荷密度 ρ'(θ)=ρ(θ)(1-α(θ)) の電荷が貯まります。
#ρ(θ)とα(θ)はθの関数の意味

(1-α(θ)) = 1/εr(θ) なので(εr(θ): 比誘電率)

ρ'(θ)=ρ(θ)(1-α(θ)) = ρ(θ)/εr(θ)

金属、誘電体境界面内に広がる電荷ρ'(θ)は反発しあって、
円...続きを読む

Q同軸円筒1mあたりの静電容量

まず私は

コンデンサーの静電容量C=εS/lを振り返り
θのときaθ bθ
θ+Δθのときa(θ+Δθ)、b(θ+Δθ)と考えました
しかしコンデンサーの面積はaΔθ)になるのでしょうか?bΔθになるのでしょうか?

どのようにもとめるのでしょうか?

Aベストアンサー

 平行平板コンデンサの場合の式を、曲面によるコンデンサに当てはめるのは無理ではないでしょうか。
 C=Q/Vという式まで戻り、QからE,EからVを求めたほうが良いと思います。
 

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q電場のエネルギー密度と静電エネルギー

電磁気学の質問です。

電場のエネルギー密度 1/2 ε_0 E^2 を空間の全体積で積分すると
静電エネルギーになるという式変形は追えるのですが、
この2つの具体的な関係がよくイメージ出来なくて困っています。
静電エネルギーというと、コンデンサーにたまるエネルギーで、
導体を帯電する時の仕事と理解してるのですが、
何かこれだけでは足りない気がしていて…。

もし、よろしければ、どなたかアドバイスいただけませんか?
よろしくお願いします。

Aベストアンサー

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味を考えてみると、電荷Qの導体自身が静電エネルギーUを持っている物だと考えていたのに、その周りの空間(場)にエネルギーが蓄えられている、という見方も出来るのです。
もっと言えば、電荷eがあるとその周りの空間にある種の歪み(電場)が生じ、その歪みがエネルギーを蓄えていると考えられるわけです。

同じように磁場についても、電荷が動けばその周りの空間に歪み(磁場)が生じ、場自身がエネルギー密度1/2*μ_0 B^2 を持つことが分かります。
磁場や電場による力についても色々式をいじくっていくとマックスウェルの応力と呼ばれる空間(場)に力が働くという表示も得られたりします。

結局何が言いたいのかというと、電磁気学というのは場という考え方に基づいて話を展開することができ、その立場の元では静電エネルギーというのは場そのものがエネルギーを蓄えていると考えられると言うことです。

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味...続きを読む

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング