光のうなり
ある流体中において、流体と等速度で移動する粒子にレーザを当てて流体の速度を測定する方法。
レーザは、ビームスプリッタによって主光と参照光に分けられ、同位相のまま交差角θで粒子に向かう。参照光はそのまま観測器に入るが、主光は粒子によって散乱され、そのうち参照光と同じ角度で観測器に向かうもののみが入る。この散乱光は粒子の速度によってドップラー効果による周波数の変化が起こっており、観測器は散乱光が入ってきた瞬間に参照光と散乱光のうなりを観測する。
今、ある流体中の粒子に対し、波長λのレーザを交差角θで照射したところ、観測器では周波数fのうなりを観測した。流体の速度vを求めよ。
ただし、光の速度cが流体の速度vに比べて十分に大きいものとする。
速度vの光の方向に対する角度はsin(θ/2)であるから、速度はvではなくvsin(θ/2)である。また、ここで「うなり」といっているのは、暗いところから暗いところに変わる回数であるから、振動数の差はf/2である
|ν'-ν|=f/2・・・(1)
ν'=ν(1-(v/c)sin(θ/2))・・・(2)
(1)と(2)より
ν|1-(v/c)sin(θ/2)-1|=f/2
∴v=(c/ν)f/2sin(θ/2)=fλ/2sin(θ/2)
この解答の(1)の右辺がfではなくf/2になる理由が理解できないでおります。「暗いところから暗いところに変わる」というのが、どうして1/2につながるのかということです。通常の音波のうなりの式|ν'-ν|=fを導く過程と何が違うのか、教えていただけないでしょうか。
この質問に対して、
まだ精査していないのですが、直感での第0次回答ですみません。
> 常の音波のうなりの式|ν'-ν|=fを導く過程と何が違うのか
「検出している物理量が何か」が違うのではないでしょうか?
光の場合、とかく忘れがちなのですが、「検出している物理量」は振幅変化ではなく、"強度"、すなわち振幅の2乗です。それに対し、音波ではマイクロホンから得られる信号は"振幅"ですね。cos波を2乗すると、その周期は元の周期に対して...? どうですか?
という解答をされてます。
この解答が理解出来ないので、誰か教えて下さい。
仮に、振幅y=Asin(wt)とおきます。(1)式
強度は、振幅の二乗かつ半角の公式より、y^2=(A^2)×(1-cos2wt)/2となります。(2)式
すなわち(1)の周期(T)に対する、(2)の周期(T´)は、T´=(1/2)×Tと表せます。(3)式
(3)式を変形すると、1/T´=2/T
すなわち、f´=2fとなり、(1)式の右辺のf/2になりません。
よろしくお願いします。
A 回答 (1件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
ご指摘の点、その通りと思います。
光検出器にλとλ’の光が同時入射し、それを2乗で検出する
場合であっても、振動項の周波数はやはり(λーλ’)であり、
2(λーλ')にはなりません。
(きちんと手を動かせばすぐ分かるはずです。)
最初に問題になった以下の部分は奇妙で理解できません。
おそらくここが誤っているようです。
>暗いところから暗いところに変わる回数であるから、
>振動数の差はf/2である
>ν'-ν|=f/2・・・(1)
うなりは、周波数の差なのでf/2でなくfであります。
|ν'-ν|=f・・・(1)'
これは譲れません。
ドップラー効果の式(2)は以下のように修正する必要があります。
ν'=ν(1-(2v/c)sin(θ/2))・・・(2)'
混乱の根本は、式(2)のドップラー効果の計算が誤っていて、
係数2が欠落していることに起因しています。
粒子から反射する光を観測する場合、ドップラー効果は以下のように
2回生じることに注意してください。
以下簡単のためθ=πとしsinを省きます。
1.動いている流体中の粒子が観測する周波数はドップラー効果
よりν’=(1-(v/c))νと周波数がシフトする。
2.動いている粒子はから反射した光のν’=(1-(v/c))νを、
粒子に対して相対的に動いている検出器が、観測する場合
再びドップラー効果が生じる。したがって、
ν''=(1-(v/c))ν'
となる。
1、2よりドップラー効果ν⇒ν''はv/c<<1の条件のもとで、
ν''=(1-(v/c))^2ν=(1-2v/c)ν
となり式(2)'が出ました。
v/c<<1の場合、高校物理のドップラー効果ν(c+v)/(v-c)を
用いても導出できますし、相対論のドップラー効果を用いても
もちろん同じです。
(1)',(2)'より結論は同じで、
v=(c/ν)f/2sin(θ/2)=fλ/2sin(θ/2)
となります。
以上、よろしくお願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
観測せず観測することは可能か?
-
花粉のブラウン運動につきまして。
-
粒子のエネルギー E=(1/2)mv...
-
この世に、完全な球体は存在し...
-
フェルトディスクに使う研磨剤...
-
固相焼結と液相焼結について
-
フェルミエネルギー
-
電子は横波ですか?縦波ですか?
-
量子力学的に光子のスピンは何...
-
素粒子の条件とは?
-
粉体の混ぜ方
-
ニュートリノと光子の違い教え...
-
ダイラタンシー現象と液状化現...
-
位置エネルギー U
-
普段の生活の中での位置エネルギー
-
「U = mgh」の「U」は何の略な...
-
力学的エネルギーの保存でレー...
-
高校物理の力学の質問
-
エルミート演算子
-
なぜ、イオンのM殻は18個まで入...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報