
問題の解法が変わったので確認してくれませんか?
「2m離れたなめらかな釘A,Bは同じ高さにある.この釘A,Bに十分長い糸をかけ,両端に質量50gのおもりをつるして静止させる.いま,糸ABの中点に75gのおもりを静かにつるしたとき,そのおもりの降下する最大距離を求めよ.」
前にも質問したのですが,という問題がわかりません.
(最初の考え方)
図を描いてみると,対角線の1つの長さ:ひし形の1辺=75:50=3:2となるひし形ができました.
なので残りの対角線:ひし形の1辺=√7:2となりました.
これを最初の条件に合わせてみると,75gのおもりが止まる(降下する最大距離)のは3/√7[m]だと思いました.
(今の考え方)
ABの中点をN,糸の中点をMとする.今回求めたいのはMNである.
また,50gのおもりはy[m]だけ上に引っ張られたとする.
するとAN=1,AM=1+y(y[m]だけ上に引っ張られたから)
力学的エネルギー保存の法則より,75*g*MN=2*50*g*yが成り立ち,MN=4y/3も成り立つから,
三平方の定理より(1+y)^2=1^2+(4y/3)^2
この式より適切な解を選ぶとy=18/7
よってMN=4/3*18/7=24/7=3.4
このように考えると,どちらもあっている気がしてしまいます.
間違っているのはどちらで,なぜ間違っているのか(どこが間違っているのか)を指摘していただきたいです.
No.2ベストアンサー
- 回答日時:
#1です。
ちょっと補足します。
>力学的エネルギー保存の法則より,75*g*MN=2*50*g*yが成り立ち,MN=4y/3も成り立つから,
この式は「75gの錘の位置エネルギーの減少がABにぶらさがっている錘の位置エネルギーの増加に等しい」としてでてくるものですね。
75gはNからMまでの距離を移動しています。
手で75gの錘を支えて糸の中点MがNの位置にあるようにしてから手を離します。錘は落下し始めます。位置エネルギーが減少しますがその減少分はABにある錘の位置エネルギーの増加だけに使われるのではありません。3つの錘の運動エネルギーにも使われています。エネルギー保存則は位置エネルギーと運動エネルギーの合計について成り立ちます。釣り合いの状態では3つの錘が静止していることを想定していますからこの運動エネルギーの分を摩擦等でなくしてしまわなければいけません。釣り合いが実現するのはそういう操作の後のことです。
実現したつりあいは力のつりあいの関係でしか考えることができないのです。
梃子の場合(Aが下がってBが上がるという場合)にはAの位置エネルギーの減少がBの位置エネルギーの増加に等しくなるという関係がでてくることがあります。(これをイメージしたのではないかなと思って補足を書こうと思いました。)
この場合の変化は非常にゆっくりと行われるという前提です。つりあいの状態からごくわずかのずれを考えています。いつも釣り合いが実現しているのと考えてもいいような変化を考えています。そういう条件が実現していれば運動エネルギーの増加は考えなくてもいいということになります。
(公園にあるシーソーでイメージを取ってください。ゆっくり上がるときとドン!と一度に上がる時とがありますね。)
ありがとうございます.
75[g]のおもりが50[g]のおもりに対してした仕事はエネルギー保存の法則になっていないのですね.
これからもよろしくお願いします.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ベクトル方程式(ヘッセの標準形)についての質問 2 2022/04/23 18:00
- 数学 AB=2,BC=3,∠ABC=60°の三角形がある。 点Aから辺BCに垂線を下ろし辺BCとの交点をD 4 2023/02/02 15:55
- 物理学 万有引力と重力の位置エネルギーについて 例えば、地球の表面から真上に質量mの球を初速v₀で投げた時の 7 2022/04/18 23:15
- 高校 対数方程式につきまして 4 2022/05/05 07:55
- 物理学 力学の問題です。質量m1、速度v1の物体Aと質量m2、速度v2の物体Bがx軸上を等速直線運動していて 2 2022/12/24 13:26
- 中学校 OA=OB=OC=AB=AC=1、 ∠BOC=90°となる四面体OABCの 辺OA上に点DをOD:D 4 2022/10/11 10:07
- 数学 条件付き極値問題といわれる問題です。ラグランジュの乗数法 について、質問したいことがあります。 条件 3 2023/05/15 21:38
- 高校 数学の成績の波が激しい&思い込みが強すぎるのを治したいです 6 2022/12/21 21:44
- 物理学 滑らかな傾角30度の三角柱の最下点に質量mのPが置かれている。三角柱を左に加速度αで動かすとき、Pが 6 2023/01/11 19:31
- 物理学 力学の問題です。水平なレールの上の台車に立てられ枠に質量mのおもりを長さLの糸で吊り下げた単振り子が 1 2022/12/23 20:15
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
ロープウェイの仕組みについて
-
問題の解法が変わったので確認...
-
物理の問題解けない
-
動滑車の問題を解いてます。 写...
-
動滑車の直径について
-
物理的根拠を教えてください
-
円運動のときは常に中心方向で...
-
半径の異なる滑車における計算式
-
物理セミナーの問題で質問です
-
ヤング率測定実験における尺度...
-
動滑車の、天井にかかる力 質問...
-
大きな力、小さな力
-
動滑車の束縛条件と解析力学の...
-
動滑車2つで物体を持ち上げる図
-
下の画像の問題の解説が意味わ...
-
糸が滑らないときの、加速度の...
-
この画像に写っている問3の(6)...
-
高校一年程度の問題
-
おもりのつり合いの問題
-
円筒をロープで締めた時の力と...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ロープウェイの仕組みについて
-
糸が切れないようにする条件
-
<<単振り子>>最下点通過のとき...
-
ヤング率測定実験における尺度...
-
円筒をロープで締めた時の力と...
-
高校物理の質問です。 下図のよ...
-
半径の異なる滑車における計算式
-
動滑車の問題でわからないとこ...
-
図のように、なめらかの定滑車...
-
大森南明 なんで読みますか?
-
物理-慣性モーメント
-
図に示す2自由度系の運動方程式...
-
物理問題解説
-
力のつりあいについて
-
高校物理の質問です。 【問題】...
-
動滑車と定滑車による重量の変...
-
ヤング率の測定
-
引き戸を低コストに「自動ドア...
-
滑車に掛かる張力(左右の張力...
-
よくホームセンターなどに売っ...
おすすめ情報