No.1ベストアンサー
- 回答日時:
グラフを描いて、それをみながら計算を進めないと
解くのが難しいかと思います。
1
y=2cosθ+sinθ=√5sin(θ+a)
ここで cos(a)=1/√5,sin(a)=2/√5 (π/3<a<π/2)
π/3≦θ+a≦π+a<3π/2の範囲で
|y|≦1を満たすθの範囲は
π/2≦θ≦(3/2)π-2arccos(1/√5)
このとき
1≧sinθ≧-cos(2arccos(1/√5))=-(2/5-1)=3/5
2
cosθ+sin(2θ)=f(θ)とおくと
π/2≦θ≦(3/2)π-2arccos(1/√5)
の範囲では
θ=π/2で f(θ)は最大となり,最大値f(π/2)=cosθ+sin(2θ)=0
θ=(3/2)π-2arccos(1/√5)で最小となり
このときcosθ=-sin(2arccos(1/√5))=-4/5
sinθ=-(2/5-1)=3/5
sin(2θ)=2cosθsinθ=-24/25
最小値f((3/2)π-2arccos(1/√5))=(3/5)-(24/25)=-9/25
∴-9/25≦cosθ+sin(2θ)≦0
No.2
- 回答日時:
>グラフを描いて、それをみながら計算を進めないと解くのが難しいかと思います。
難しく解くから、そういう感想になる。。。。。w
cosθ=x、sinθ=y、とすると、x^2+y^2=1 0≦y≦1、|x|≦1、-1-2x≦y≦1-2x ‥‥(1)
(1)をxy平面に図示すると、とり得る値の範囲は 単位円のA(0、1)、B(-4/5、3/5)の間。
>1、sinθのとる値の範囲を求めよ
3/5≦y≦1 は明らか。
>2、cosθ+sin2θのとる値の範囲を求めよ
P=x+2xy=(2y+1)*x という2変数問題の最大値と最小値になる。
3/5≦y≦1、-4/5≦x≦0 であり、2y+1>0より 傾きが正のxの一時関数。
あとは簡単だろう。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 座標変換について 1 2022/08/04 16:42
- 数学 複素数についての質問です。 1+iの主値を求める問題で回答が以下のようになっていました。 1+i = 5 2022/07/22 04:04
- 数学 数学 三角比 sin80°もsin110°もどちらもcos10°ですか? sin(90°+θ)=co 5 2023/05/07 01:44
- 高校 変数の置き換えと範囲の確認につきまして 1 2022/05/21 14:31
- 数学 三角関数の問題なのですが、 0≦θ<2π のとき次の関数の最大値最小値を求めよ。 y=sin²θ+s 3 2023/05/24 18:06
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
日本数学オリンピック2000年予...
-
数学の問題教えてください
-
数学の関数極限の問題を教えて...
-
ベクトル場の面積分に関してです
-
cos{θ-(3π/2)}が-sinθになるの...
-
f(x)=|sinx| のフーリエ展開が...
-
三角関数の「1/3倍角の公式...
-
正弦波の「長さ」
-
この問題教えてください
-
数学の質問ですがよろしくお願...
-
積分 1/sin^3x 問題
-
積分の計算について
-
社会の中での三角比の使われかた
-
数学について質問です。 nを正...
-
【至急】数llの三角関数の合成...
-
面積
-
lim[x→0]tanx=xとなる理由は?
-
三角関数の問題です。教えて下...
-
方程式
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
cos{θ-(3π/2)}が-sinθになるの...
-
数学の関数極限の問題を教えて...
-
f(x)=|sinx| のフーリエ展開が...
-
日本数学オリンピック2000年予...
-
数学について質問です。 nを正...
-
【至急】数llの三角関数の合成...
-
ベクトル場の面積分に関してです
-
sinθ―√3cosθ=a(θ+α)の形にした...
-
積分 1/sin^3x 問題
-
0≦x<2πの範囲で関数y=-√3sin...
-
sin(π+x)は、-sinx になりますか?
-
なんで4分の7πではなく −4分のπ...
-
数Ⅲ 複素数平面について質問で...
-
この問題教えてください
-
三角関数
-
正弦波の「長さ」
-
三角関数の「1/3倍角の公式...
-
x^2=i
-
三角関数について教えてくださ...
おすすめ情報