重積分∫∫_D √(a^2 - x^2 - y^2) dxdy (a>0) D: x^2 + y^2 <= a^2を極座標
で解こうとしているのですが、うまくいきません。
本の答えの"(2πa^3)/3"まで、どうにか辿り着かせてください。m(__)m
自分がやったところまで書きますと、
0 <= r <= a (自信なし)
0 <= θ <= 2π
√(a^2 - (r cos(θ))^2 - (r sin(θ))^2)
=√(a^2 - r^2 cos(θ)^2 - r^2 sin(θ)^2)
=√(a^2 - r^2(cos(θ)^2 + sin(θ)^2))
=√(a^2 - r^2)
(この時点でθが残ってないのが怪しい…)
∫∫_D √(a^2 - x^2 - y^2) dxdy
=∫∫_E √(a^2 - r^2) drdθ
=∫[0,2π] dθ ∫[0,a] (a^2 - r^2)^(1/2) dr
=∫[0,2π] dθ [(2/3)(1/2r)(a^2 - r^2)^(3/2)][0,a] (ここからまったく自信なし)
=∫[0,2π] dθ [(1/3r)(a^2 - r^2)^(3/2)][0,a]
=∫[0,2π] dθ [(1/3a)(a^2 - a^2)^(3/2)] - [(1/3(0))(a^2 - 0^2)^(3/2)]
…0では割れないので間違っているはずです。
計算機で∫[0,a] (a^2 - r^2)^(1/2) drを解くと
(a・|a|・π)/4
と出ます。これも正しいのか分かりません。
まずは、この問題でのrとθの範囲の取り方を教えてください。
お願いします。
No.1ベストアンサー
- 回答日時:
x や y をどのように置くのか書かないとダメだろ.... 自分の中だけで完結するならともかく, このように他人の目に触れることを前提にするなら「書かなくてもわかってくれるはず」という甘えはなくしてほしい.
で x = r cos θ, y = r sin θ とおくと
√(a^2 - x^2 - y^2) = √(a^2 - r^2) です. ここは θ が消えるのが正解... というか, ここで θ が残らないように置換しているんだから消えて当然, 消えない方がおかしい.
でそこはいいんだけど
∫∫_D √(a^2 - x^2 - y^2) dxdy
=∫∫_E √(a^2 - r^2) drdθ
は間違っています. 置換積分についてきちんと確認してください.
なお, ここから既に間違っているので本筋とは全く関係ありませんが
∫[0,2π] dθ ∫[0,a] (a^2 - r^2)^(1/2) dr
=∫[0,2π] dθ [(2/3)(1/2r)(a^2 - r^2)^(3/2)][0,a]
も間違いです.
で (この問題とは全く無関係なので) もう本当にどうでもいいのですが
「計算機で∫[0,a] (a^2 - r^2)^(1/2) drを解くと
(a・|a|・π)/4
と出ます」の部分は正しい.
この回答への補足
あーっ、ありがとうございます、よく見るとrが抜けてますね!
それと「x = r cos θ, y = r sin θ とおくと」を忘れていました、すみませんでした。
計算し直しますので、しばらくお待ちください。m(__)m
出来ました!(奇跡的に)
後半の間違いのご指摘も大変な助けになりました。
∫∫_D √(a^2 - x^2 - y^2) dxdy
=∫∫_R {√(a^2 - r^2) r} drdθ
=∫[0,2π] dθ ∫[0,a] {r(a^2 - r^2)^(1/2)} dr
=[θ][0,2π] [(-1/2r)(2/3)r(a^2 - r^2)^(3/2)][0,a]
=[2π - 0] [(-(a^2 - r^2)^(3/2))/3][0,a]
=2π [(-(a^2 - a^2)^(3/2))/3 - (-(a^2 - 0^2)^(3/2))/3]
=2π [(-(0)^(3/2))/3 - (-(a^2)^(3/2))/3]
=2π [(a^3)/3]
={2π(a^3)}/3
ありがとうございました!
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 微分積分の二重積分についての問題がわからないです。 1 2022/07/17 02:36
- 数学 次の関数を微分せよ y=sin^4 x cos^4 x という問題で自分は積の微分法で微分して y' 3 2023/05/17 20:38
- 物理学 物理 2 2023/01/17 13:31
- 数学 微分積分の二重積分についての問題がわからないです。 1 2022/07/17 02:38
- 物理学 物理の問題です。 1 2022/12/20 23:04
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 座標変換について 1 2022/08/04 16:42
- 高校 数3 面積 4 2022/05/11 12:37
- 数学 「n≦-2の時 z≠π/2の時 g(z)=tan(z)(z-π/2)^(-n-1) z=π/2の時 22 2022/07/04 22:24
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
とっておきの手土産を教えて
お呼ばれの時や、ちょっとした頂き物のお礼にと何かと必要なのに 自分のセレクトだとついマンネリ化してしまう手土産。 ¥5,000以内で手土産を用意するとしたらあなたは何を用意しますか??
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
【穴埋めお題】恐竜の新説
【大喜利】 考古学者が発表した衝撃の新説「恐竜は、意外にもそのほとんどが〇〇〇」 (〇〇〇に入る部分だけを回答して下さい)
-
∬1/√(x^2+y^2)dxdy を求めよ。
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・遅刻の「言い訳」選手権
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
離散フーリエ変換(DFT)の実数...
-
日本数学オリンピック2000年予...
-
渦巻きの数式を教えてください...
-
積分 1/sin^3x 問題
-
教えてください
-
場合分けがわからない…(高校・...
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
Z=f(x,y) x=rcosθ y=rsinθで
-
最大値・最小値を求める問題に...
-
高校数学、図形量の最大最小問題
-
数学得意な方! cos240度=cos(...
-
円環の体積 断面積が半円の内側...
-
cos{θ-(3π/2)}が-sinθになるの...
-
正弦波の「長さ」
-
f(x)=√2sinx-√2cosx-sin2x t...
-
高校数学
-
三角関数の「1/3倍角の公式...
-
不定積分です。よろしくお願い...
-
方程式
-
数学
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
cos{θ-(3π/2)}が-sinθになるの...
-
日本数学オリンピック2000年予...
-
f(x)=|sinx| のフーリエ展開が...
-
数学の関数極限の問題を教えて...
-
【至急】数llの三角関数の合成...
-
sinθ―√3cosθ=a(θ+α)の形にした...
-
台形波のフーリエ級数
-
三角関数の「1/3倍角の公式...
-
0≦x<2πの範囲で関数y=-√3sin...
-
正弦波の「長さ」
-
積分 1/sin^3x 問題
-
ベクトル場の面積分に関してです
-
三角関数
-
数学について質問です。 nを正...
-
数学の質問ですがよろしくお願...
-
離散フーリエ変換(DFT)の実数...
-
なんで4分の7πではなく −4分のπ...
-
楕円の問題です^^
-
数学が得意な人に質問です。こ...
おすすめ情報