痔になりやすい生活習慣とは?

X線回折装置で、なぜX線でないといけないか?というのがいまいち分かりません。 他にもα線やγ線などの放射線もあるのになぜX線なのかと、、、、、透過率が大きいくらいしか見当がつかないです。

簡単でいいのでだれかご説明願います><

A 回答 (4件)

X線とγ線を使う上で.α線との違いは.


「安全」だから
です。スイッチさえ切れば.X線はとまりますが.他はいつまでも出ていて.危なっかしいことはなはだしいのです。
γ線は.今でこそ.スイチひとつで出せます(機械によりますが)が.昔は出せなかったのです。だから.α線と同じ扱いです。
    • good
    • 1

X線回折は サンプルの結晶の結晶面の間隔(正確には格子面の間隔)の測定に使われます。

したがって 結晶面間隔程度を 波長をサンプルに 照射するわけです。格子面間隔は 通常 0.1-10オングストロームですので それに近い光の波長は X線領域となります。
回折をおさらいしてブラッグの式で説明します。
 nλ=2d×sinα
  n:次数 1でもよい。(2以上は回折線は弱いのが普通。)
  λ : 照射するX線の波長
  d:  格子面間隔(これが 求めたいものですね。)
  α:回折線を測定する角度
 
 sinα<1ですので dと同じ程度の波長が必要であり、それが X線領域です。α線や、γ線は 短すぎて使えません。

なお 回折現象は サンプルの表面層で起こる現象で透過力は重要要素ではありません。
    • good
    • 1

えーとよくわからないんですが、X線回折なんだから


回折できないと話しにならないわけで。
波長~回折格子の幅~原子間距離
だからじゃないんですか?
    • good
    • 4

X線の特徴は、電気エネルギーから簡単に作り出すことが出来るということもあります。

具体的には、過熱したフィラメントから出た熱電子を高電圧をかけて加速し、ターゲットと呼ばれる電極に衝突させることで作ります。

α線とβ線はナトリウム原子核で、放射性物質から取り出すか、核反応を利用する以外に簡単には取り出すことが出来ません。透過力は非常に弱く、プラスチックフィルムや木の板でも遮蔽できます。これではレントゲン撮影のように利用できません。
γ線も人工的には作り出すことが出来ません。また、γ線はX線よりも透過力が強く、薄い金属製の容器では簡単に漏れ出すことがあり、管理が難しいのです。レントゲン撮影のように金属製品を透視することも出来ますが人体には使用されません。コバルト60という放射性同位元素から取り出して利用されます。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

QX線のKαって何を意味するのでしょう?

タイトルのまんまですが、XRD、XPSなどで使われる特性X線のCu-Kα線、Mg-Kα線のKαってなにを意味するものなのでしょうか?
ちょっと気になった程度のことなので、ご覧のとおり困り度は1ですが、回答もきっとそんなに長くならないんじゃないかと思うのでだれか暇な人教えて下さい。

Aベストアンサー

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻やM殻の電子は安定した状態を保とうと、K殻へ落ち込みます。このとき(K殻のエネルギー)-(L殻のエネルギー)に相当するエネルギーがあまるので、これがX線となりこのエネルギーをもつX線が発生します。

そこで、potemkineさんの質問にあるとおり、Kαとかの命名法ですが、Kに相当するものは電子が衝突して飛び出した殻を示し、αは飛び出した殻に対していくつ外側の殻から電子が飛び出したのかを示すもので、1つ上からならα、2つ上ならβ。3つ上ならγといったようにあらわします。
例えば、K殻の電子が飛び出し、そこをM殻が埋めた場合(2つ上の準位)はKβ、L殻の電子が飛び出しそこをM殻が埋めた場合はLα
ちなみに下からK殻、L殻、M殻、N殻の順番です。

エネルギーや半値幅(エネルギーの広がり)の面から一般に用いられてるX線は、AlKα、CuKα、MgKαなどです。

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻や...続きを読む

Qブラッグの式で使われるn次反射について

ブラッグの式で使われるn次反射についてお聞きしたいのですが、
nは1からあるようなのですが、いまいちn次反射についてわかりません。
n次反射について詳しく教えていただけないでしょうか?

Aベストアンサー

ブラックの反射式は
2d sin θ=nλ
(d:面間隔,θ:入射角,λ:波長)
ですね。
nは2d sinθが波長(λ)何個分に相当するかを示した数値です。そのままですね。
あるθ1とθ2で反射ピークを観測したとします。
その時、2d sin θ1=λ、2d sin θ2=2λ
を満たすとき、θ2に現れた反射ピークはθ1で観測した反射ピークの2次反射であるといいます。
高次反射は必ず発生しますが、nが大きくなればなるほど広角になるので反射強度が弱くなり観測が難しくなります。

余談ですが、このn値は逆格子上の指数?(h,k,lの最小公倍数の倍数)と一致します。X線主体の本はこれで説明することが多いようですが、実格子と逆格子を併用してイメージするのはかなり難しいと思います。逆格子は解析するには便利なツールですが、これで現象を理解する事はかなり難しいと思います。

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。

QX線回折(XRD)分析の半値幅について

現在粉末用のXRD装置を使用しているのですが、半値幅に含まれる情報に関して教えてください!
参考書などを呼んでいると、結晶性のピークに着目した場合、ピークの半値幅が大きくなるほど結晶子サイズは小さいことを意味すると書いてあり、これはなんとなくわかりました。
しかし、非結晶性のものを測定すると一般的にはブロードピークとなるものが多いかと思うのですが、相互関係がわかりません・・・。非結晶性のものは結晶子サイズが小さいということではないですよね?

段々結晶子サイズが小さくなっていった時に、少しづつピークはブロードに近づくとは思うのですが、
・結晶子サイズが小さくなっている
というのと、
・非結晶性のものである
というものの区別はどうやって判断したらよいのですか?ある程度は半値幅を超えたら非結晶性のものとかいう基準があるのでしょうか?

Aベストアンサー

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低いか、3)装置による制約
から来ます。
原因3)は基準物質を使い補正計算をしてある程度除去することが
できます。
原因1)の影響を考慮したのがシェラーの式ですが、常に原因2)の寄与
も含まれています。
原因2)は小さくても結晶で有れば散乱強度を決める構造因子は定まります。
ここで構造因子に欠陥や小さくなることで発生した構造の乱れを組込めば
非晶性の広がったハローを再現できるかも知れません。
しかし、非晶性物質では構造の乱れは大きすぎ、結晶学的な構造因子は
もう決められません。
その代わりに、原子の相互配置を確率的に表した動径分布関数が散乱強度
の計算に導入されます。
一つの物質からの散乱強度の計算に、ここまでは構造因子方式、ここからは
動径分布関数方式という使い分けはされていません。

したがって、結晶子サイズが小さくなっているというのと、非結晶性の
ものであるということの明確な境界は無いように見えます。
当然、ある半値幅を超えたら非結晶性のものとかいう基準は有りません。

溶融体を急冷して結晶化させようとした場合、できたモノを欠陥だらけの
極微細結晶からなるとするか、非晶質になったと解釈するかは半値幅だけ
からはできないと思います。

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qアルゴンレーザの発振波長の表が載っているサイト

アルゴンレーザの発振波長の表が載っているサイトを探しています。

ラマン分光器の励起光にアルゴンレーザを使っています。このレーザでは
通常487.9nmと514.5nmの光を取り出しますが、その他にも自然放出
光があります。

最近、特に弱いラマン光を測定しているため、自然放出光も検出されてし
まい、ラマン光か自然放出光の判別が難しい状況です。

そこで、自然放出光の波長と強度を知りたいと思います。

よろしく、お願いします。

Aベストアンサー

波長選択していない場合は、Arレーザ光は複数の波長(487.9,514.5nmだけでなく)で発振しています。
通常観測される代表的な物は参考URLを見て下さい。

自然放出光という話ですが、ピンホールをレーザ光の経路に複数配置すると共にある程度距離をとり、直接ディテクターに入射しないようにすれば大抵は回避可能だと思いますよ。
(レーザ光は指向性が高いが、自然放出光は広がってしまう性質を利用します)
基本的にはこれは排除するのが望ましいでしょう。Arの自然放出のスペクトルラインは非常に沢山ありますから。

自然放出光が検出されているかどうかは、発振管とリアミラーの間に板などの障害物を挿入して発振しないようにしたときに、検出される光が(ラマン光以外に)あればそれが自然放出光です。

Arスペクトルを知りたいときには、NISTのデータベースを見て下さい。

http://physics.nist.gov/PhysRefData/contents.html

Atomic Spectra Database を使ってArを調べれば、すべてのラインがわかります。

参考URL:http://www.eio.com/repairfaq/sam/laserarg.htm

波長選択していない場合は、Arレーザ光は複数の波長(487.9,514.5nmだけでなく)で発振しています。
通常観測される代表的な物は参考URLを見て下さい。

自然放出光という話ですが、ピンホールをレーザ光の経路に複数配置すると共にある程度距離をとり、直接ディテクターに入射しないようにすれば大抵は回避可能だと思いますよ。
(レーザ光は指向性が高いが、自然放出光は広がってしまう性質を利用します)
基本的にはこれは排除するのが望ましいでしょう。Arの自然放出のスペクトルラインは非常に沢山ありま...続きを読む

Q結晶の面方位について

結晶の面方位(111)(110)(0001)などの表し方の基本を説明している書籍・サイトがあれば教えてください

Aベストアンサー

結晶構造の(abc)面の意味は、資料 [1] が参考になります(図の緑色の面がその面)。このサイトで結晶構造に関する質問 [2], [3] が過去にありますので、その回答の参考URLも参照してみてください( sanori さんと重複してないかな)。面方位は面指数とかミラー指数とも言います。

[1] ミラー指数 http://www.f-denshi.com/000okite/300crstl/304cry.html
[2] 結晶構造 http://oshiete1.goo.ne.jp/qa661938.html
[3] X線回析の結果から分からない言葉が・・ http://oshiete1.goo.ne.jp/qa1976049.html

Q電子顕微鏡と光学顕微鏡、それぞれの長所・短所

顕微鏡には大別すると電子顕微鏡と光学顕微鏡がありますが、それぞれどのような長所・短所を持っているのですか? 倍率などでは圧倒的に電子顕微鏡のほうが優れているはずなのに、光学顕微鏡も今日まで現役を守り通しているということはなにか電子顕微鏡には無い優れた点があると思うのですが…。装置が複雑であるかそうでないかを起因とする幾つかの違いはだいたい分かるのですが。よろしくお願いします。

Aベストアンサー

実際に使う分野では、小さなものが見られるほどいいとは限りません。
たとえば、ガン細胞をみたい時に、ガン細胞を作っている分子や原子がみえちゃったら、その細胞全体がどういう恰好してるのか見えないですよね。

その分野によって、必要な倍率があります。
また、電子顕微鏡では色はないですね。
いまあげたガン細胞の検査なんかでは、色は重要な意味を持ちます。

ある程度低い倍率で見なければ見えないものもあるので、これから先も電子顕微鏡も光学顕微鏡も共存していくことでしょう。

鉱物学なんかでは、数十倍の顕微鏡じゃないと役に立たないなんてのもあるんですよ。

また、位相差顕微鏡、シュリーレン干渉顕微鏡、偏光顕微鏡といった、光の特性を利用した顕微鏡は電子顕微鏡では不可能です。(理論的にはできるのもありますけど)

Q結晶子とは何のことなのでしょうか?

タイトルのまんまです。結晶子とは何者なのでしょうか?あとXRDとかででてくる結晶子サイズ(同じことでしょうか?)についてもお願いします

Aベストアンサー

結晶の一番小さいもの。原子のような感じです。
結晶子サイズはそのまま、結晶子の大きさという意味です。


人気Q&Aランキング