(1)二次方程式x^2+2mx+2m^2-5=0の一つの解が1より大きく、他の解が1より小さい。
(2)二次方程式x^2+2mx+2m^2-5=0の2つの解がともに1より小さい
(1)このとき、解と係数の関係を使って進めていくときに
解をα、βとするとなぜαβ>0という条件のみでいいんでしょうか
D>0なのか、D<0のどちらですか。。そしてなぜそうなんでしょうか。
(2)解説には、2つの解が負のときと同じように条件をたてていますが、
1より小さい。だけじゃ、正か負かまだわからないきがするんですが・・。分数とかの場合は
かんがえないんでしょうか。
D>0なのはわかりますが、なぜα+β<0 αβ>0?
No.2ベストアンサー
- 回答日時:
(1)二次方程式x^2+2mx+2m^2-5=0の一つの解が1より大きく、他の解が1より小さい。
(2)二次方程式x^2+2mx+2m^2-5=0の2つの解がともに1より小さい
>(1)このとき、解と係数の関係を使って進めていくときに
>解をα、βとするとなぜαβ>0という条件のみでいいんでしょうか
>D>0なのか、D<0のどちらですか。。そしてなぜそうなんでしょうか。
(α-1)(β-1)<0です。D>0ですが、(α-1)(β-1)<0から条件を出すだけで、
D>0の場合の条件も求めてしまうことになります。(実際に解いてみれば分かります。)
>(2)解説には、2つの解が負のときと同じように条件をたてていますが、
>1より小さい。だけじゃ、正か負かまだわからないきがするんですが・・。分数とかの場合は
>かんがえないんでしょうか。
α<0,β<0なのではなくて、α-1<0,β-1<0です。
αとβが何であっても、とりあえずこの条件をみたすと言うことです。
>D>0なのはわかりますが、なぜα+β<0 αβ>0?
α-1<0,β-1<0なので
(α-1)+(β-1)<0から、α+β<2,(α-1)(β-1)>0 です。
D>0からの条件も求めておく必要があります。
どうでしょうか?
No.5
- 回答日時:
またもや、書き込みミスを発見。
自分で嫌になるね。。。。。。w書き込みの、半分は“書き込みミスの訂正”だろう。
(誤)f(x)=x^2+2mx+2m^2-5=0とすると 判別式≧0、f(1)<0、軸<1 が求める条件。
(正)f(x)=x^2+2mx+2m^2-5=0とすると 判別式≧0、f(1)>0、軸<1 が求める条件。
No.3
- 回答日時:
(1)
参考書の解説が分からないので、理解に苦しむところもあるが。
2解をα、βとすると α>1、β<1とすると、判別式>0、(α-1)*(β-1)<0、しかし(α-1)+(β-1)の正負は分からない。同時に、1を挟んで2解があるから 判別式>0も自明。
(2)
x<1より x-1=tとすると t<0.
これを条件の方程式に代入すると t^2+2(1+m)t+2(m^2+m-2)=0.
この2解が負から 判別式≧0、2解の和=-2(1+m)<0、2解の積=2(m^2+m-2)>0。これらの共通範囲が答。
これは、こんな方法をやらなくても“解の配置”というのが教科書に載ってるはず。
f(x)=x^2+2mx+2m^2-5=0とすると 判別式≧0、f(1)<0、軸<1 が求める条件。
これを使えば、(1)は簡単。f(1)<1 で終わり。
No.1
- 回答日時:
1の条件を満たす式は (α-1)(β-1)<0です。
2の条件を満たす式は (α-1)(β-1)>0 且つ α+β<2 です。
これらにα+β=-2m αβ=2m^2-5 を使ってα、βを消去してmだけの数式にして解きます。
根が二つあるのですから勿論 D>0です。
なぜα+β<0 αβ>0?→そうはなりませんよ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
高1の数学でこんな感じに解の公...
-
二次方程式の解の書き方
-
なんでx軸と接しているところが...
-
高校数学についてです。 以下の...
-
求伏見稻荷大社和難波八阪神社...
-
連立方程式 ax+by=13 bx+y=9 ...
-
2次方程式x^2-x-1=0の2つの解を...
-
解と係数の関係
-
重解とは??
-
二次方程式の虚数解と複素数の...
-
判別式はyにおいても使えますか...
-
2次方程式x²+px+q=0の2つの異な...
-
連立方程式の答え方って (x,y)=...
-
二次方程式の解で、ありえない...
-
数学
-
共通解の問題についてです。こ...
-
二次方程式において 整数解を持...
-
なぜ「異なる2つの実数解」と書...
-
数学 高校2年 ア、イ、カを教...
-
八阪神社 戀愛籤 解籤
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
高1の数学でこんな感じに解の公...
-
二次方程式の解の書き方
-
なんでx軸と接しているところが...
-
求伏見稻荷大社和難波八阪神社...
-
共通解の問題についてです。こ...
-
連立方程式の答え方って (x,y)=...
-
2次方程式でX^2-3x+2k=0 が...
-
対称行列同士の積は対称行列?
-
なぜ「異なる2つの実数解」と書...
-
83 a=0、2、≠0、2、と場合分け...
-
高校数学についてです。 以下の...
-
二次方程式の虚数解と複素数の...
-
3次と2次の方程式の共通解
-
2次方程式x^2-x-1=0の2つの解を...
-
判別式はyにおいても使えますか...
-
写真の数学の質問です。 なぜ、...
-
日本冰川神社解籤
-
八阪神社 戀愛籤 解籤
-
たすきがけと解の公式の答えが...
-
【数Ⅰ】次の2次方程式が重解を...
おすすめ情報