
半径rの円に沿ってvの速度で等速回転しているとき、速度の大きさは
v=r*(dθ/dt)……図7参照
速度ベクトルvは、位置ベクトルrの方向変化の割合を示すものであるが、これを示すものとして、
回転運動面に垂直な方向を指す単位ベクトルcを導入する。
角速度ベクトルωは、cにdθ/dtを掛けたもので、
ω=(dθ/dt)*c……図8参照
とする。
という解説がありました。
ここで質問です。
1.ω=(dθ/dt)*cとなるのが分かりません。
分かりやすい説明をお願いします。
2.図7と、図8でrが出てきますが、同じものなのですか。
図7と、図8では、rの大きさが違うように思えるのですが。
以上、宜しくお願いいたします。

No.2ベストアンサー
- 回答日時:
1.角速度ベクトルωは,ある軸の周りの回転を表すベクトルで,向きは回転軸,その大きさが回転軸に垂直な半径aの円をとったとき,円上の点の速度がa|ω|になるように定義されます.これをベクトルの外積で図8のように
v=ω×r
と書くことができます.
大きさ |v|=|ω||r|sinφ(a=|r|sinφ) 向き 回転軸と動径rに垂直
θは図8の円上の回転角であり,|ω|=dθ/dtとなります.これに回転軸の向きをつけると
ω=(dθ/dt)*c
となります.
2.図7のrに相当するのが図8のrsinφです.
図7は平面上で原点を円の中心にとり,図8では空間内で原点を回転軸上の任意の点にとっているのです.図8で円の中心に原点をとれば図7のようになりますが,空間的にはそうでない場合もあるでしょう.

No.1
- 回答日時:
ベクトルとスカラーが明示されていないので混乱を招く説明になってしまっているのかもしれません。
最初に関係式を出しておくと、v=r×ωです。v(速度), r(半径方向のベクトル), ω(角速度)はベクトルです。×は外積を表す記号です。
これらがスカラー(つまりベクトルの大きさ)としての式にも使われ、その場合は×は単なる掛け算です(普通は文字式では省略して、v=rω)。
二つのベクトルの外積は、ベクトルになり、元の二つのベクトルと垂直の方向を向きます。
>1.ω=(dθ/dt)*cとなるのが分かりません。
v=r*(dθ/dt)を速度の大きさとしているわけですから、全てスカラーです。
ここで、ω=(dθ/dt)*cとしていますね。cは単位ベクトルですね。これが何から出てきているかと言うと、ω, r, vをベクトルとして、円運動での角速度ベクトルの定義、ω=r×ω/r^2からです。
以下、それを使って、ちゃんと3次元成分に分解して、外積の掛け算にしたがって計算すればいいんですけど、省略します。
cが単位ベクトルであることから、ベクトルの大きさが1であるため、rもvもベクトルとすれば、v=r×ωとすることができます。速度(ベクトル)vは、ベクトルrとベクトルω(ベクトルcの向き)と垂直な方向であることは、お分かりいただけるかと思います。きちんとベクトルの外積の通りになっています。
>2.図7と、図8でrが出てきますが、同じものなのですか。
おそらく、まだ続きがあり、最終的にφという角度の意味も説明して、同じものとしたいのだろうと推測します。図7は図8を円がある平面上に射影したもの、ということになるかもしれません。それなら、rの大きさは違ってきそうです。
しかしそれは、この説明が出てきた前後を見て見ないと、うかつなことは言えないように感じます。この部分だけでは、「図8はベクトルの扱いを強調してあるようだ」くらいに思っておいて、とりあえず判断しなくていいかと思います。
ここでの要点は、角度の微分である角速度を、どのようなベクトルとして表現すれば、回転運動する向きの速度ベクトルを表せるかということだろうと思います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
ベクトル関数の概略を図示せよ...
-
ミラー指数:面間隔dを求める式...
-
角速度のベクトルの方向は何故...
-
三相交流の仕組みが調べても理...
-
RL,RC並列回路のベクトル軌跡
-
角運動量の方向って何ですか?
-
電荷と電束、磁荷と磁束について
-
物理の力や速度は何故ベクトル...
-
波数の意味と波数ベクトル
-
重心と質量中心の違いについて
-
単位ベクトルi,j,k と ベクト...
-
ベクトルの外積 軸性ベクトル...
-
基本ベクトルと単位ベクトルの...
-
逆格子ベクトル
-
ベクトル解析?!の問題につい...
-
物理の二乗平均速さなのですが
-
力のモーメントのつりあいで 鉛...
-
水素原子の原子構造因子
-
交流の複素表示について
-
ブリュアンゾーンの物理的な意味
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ベクトル関数の概略を図示せよ...
-
波数の意味と波数ベクトル
-
三相交流の仕組みが調べても理...
-
ベクトルの外積 軸性ベクトル...
-
基本ベクトルと単位ベクトルの...
-
重心と質量中心の違いについて
-
ミラー指数:面間隔dを求める式...
-
ラウエ条件とブラッグ条件
-
電荷と電束、磁荷と磁束について
-
モーメントの符号
-
角速度のベクトルの方向は何故...
-
ダイヤモンドの構造因子
-
ベクトルを2乗表記 (v↑)^2 につ...
-
物理の力や速度は何故ベクトル...
-
xy平面上を運動する物体Aがある...
-
ブリュアンゾーンの物理的な意味
-
ベクトルの太文字書きについて...
-
角運動量の方向って何ですか?
-
圧力はスカラーなのに なぜ図の...
-
ベクトルの分解
おすすめ情報