ついに夏本番!さぁ、家族でキャンプに行くぞ! >>

少数キャリア連続の式について質問があります

熱平衡状態での少数キャリア連続の式を解くときは
キャリアが時間変化しないということでキャリアの時間微分の項を0とするようですが
順方向電圧を印加している状態でもキャリアは時間変化しないので時間微分の項を0とするものなのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

yes



時間微分の項が0と言うよりは、ある地点に於いて
時間的キャリア変化をもたらす要因となる項の総和が0となる式を立てる。
定常状態を仮定するならどの場合でもそう。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qフェルミ準位について教えてください

私の持っている資料にフェルミ準位についてこう書かれていました。

「電子が絶対零度で存在することができる最大エネルギーをフェルミエネルギーと言う」

また教科書には

「フェルミ準位よりも下に位置する準位には電子が存在し、この上にある準位には電子がないようなものと考えて良い」

この考えで、真性半導体についての説明をんで混乱しました。

「価電子帯のすべての準位は電子で満たされている。従って絶対零度における電子の存在確率は価電子帯で1、伝導帯で零となり、存在確率が1/2となる。すなわちフェルミ準位は価電子帯と伝導帯の間に位置することになる。」
以下に教科書の図を示します(手書きで申し訳ありません)

EcとEvの間は禁制帯で電子が存在できないはずなのに、図を見ると、禁制帯の間にフェルミ準位があります。 上の教科書の説明からいくと、EfとEvの間には禁制帯ながら、電子が存在できることになりますが.....これはどういうことでしょうか?

このまま読み進めた結果PN接合のところでさらに混乱してしましました。

長くなってしましましたが、回答宜しくお願いします

私の持っている資料にフェルミ準位についてこう書かれていました。

「電子が絶対零度で存在することができる最大エネルギーをフェルミエネルギーと言う」

また教科書には

「フェルミ準位よりも下に位置する準位には電子が存在し、この上にある準位には電子がないようなものと考えて良い」

この考えで、真性半導体についての説明をんで混乱しました。

「価電子帯のすべての準位は電子で満たされている。従って絶対零度における電子の存在確率は価電子帯で1、伝導帯で零となり、存在確率が1/2となる。すなわち...続きを読む

Aベストアンサー

価電子帯の電子は、エネルギーを受けると伝導帯に遷移することはわかりますね?
また、フェルミ分布関数を考えてみると、フェルミエネルギーの点を原点にすると点対称な関数になっています。

遷移する前とした後の電子の準位の中心は、フェルミエネルギーになっているはずです。
電子がいくつも励起されると、分布関数に従ったエネルギー分布を見せます。
これは価電子帯のホールの分布も同じ形で分布します。
電子の分布をみた場合、価電子帯の上端と、伝導帯の下端の間の中心にフェルミエネルギーがあるような分布をしているということから、フェルミエネルギーはこのような位置になります。(ある種の対称性がある為、中心になります)

ドープ原子がある場合、電子が存在できる準位が禁制帯の中にできてしまう為、電子の存在分布が変わり、フェルミエネルギーが少し上もしくは下に移動することも教科書には書いてあることでしょう。

Q真性キャリア密度niの計算に関して

半導体工学のテキストに載っている真性キャリア密度の計算ですが
下式が有名ですが、この式と下記のパラメータを使って計算をすると、テキストに書いてある値(1.5×10^10 /cm^3または、1.45×10^10 /cm^3)と違っています。

式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)
ni=√(2.8×10^19×1.02×10^19)×exp(-1.12×1.6×10^-19/2×1.38×10^-23×300)

パラメータ
Nc=2.8×10^19
Nv=1.02×10^19
q=1.6×10^-19
Eg=1.12
k=1.38×10^-23
T=300

計算過程は間違いないと思いますが、1.5×10^10 /cm^3または、1.45×10^10 /cm^3の値になりますでしょうか?

Aベストアンサー

昨日から、誰か回答してくれないかなぁと待っていましたが、なかなか現れないので、私が書くことにしました。
しかし、ずいぶん昔のことなので、自信がありませんので、違っているかもしれません。
たぶん次のところではないかと思うんですが。

>式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)

上式は、PN積のni^2が一定となると言うことから、平方根をとっているのではないかと推測します。
この式のNcとNvがありますが、これは伝導帯中の電子の密度と価電子帯中のホール密度の定数部分ですよね。

ですが、
>テキストに書いてある値(1.5×10^10 /cm^3または、1.45×10^10 /cm^3)

この値は、伝道帯中の自由電子密度だけの値ではないでしょうか?
そう考えて、計算してみると、質問にあるパラメーターを用いて計算しても、1.5×10^10 /cm^3程度の値になります。

計算式は、
ni=Nc×exp(-Eg*q/2*kT)
です。

蛇足ですが、常温(T=300[K])のときのkTの値は、[eV]で表すと、約0.026[eV]となりますので、大雑把に計算するときはこの方が便利です。
ni=Nc×exp(-Eg/2*0.026)

昨日から、誰か回答してくれないかなぁと待っていましたが、なかなか現れないので、私が書くことにしました。
しかし、ずいぶん昔のことなので、自信がありませんので、違っているかもしれません。
たぶん次のところではないかと思うんですが。

>式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)

上式は、PN積のni^2が一定となると言うことから、平方根をとっているのではないかと推測します。
この式のNcとNvがありますが、これは伝導帯中の電子の密度と価電子帯中のホール密度の定数部分ですよね。

ですが、
>テキ...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qキャリアの移動度と温度依存性について

キャリア密度は温度依存性がある理由は分かったのですが、なぜ移動度にも温度依存性があるのか分かりません。

どなたか回答お願いします。

Aベストアンサー

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げられてしまいます。不純物密度が高いほど移動度は小さくなっていきます。しかし、温度が上昇すると、速度の大きいキャリアは、すり抜け、平均速度は大きくなるため、偏向の割合が少なくなるので、移動度は増加していきます。
逆に言えば、キャリア密度が小さいときに、温度が高くなると移動度の減少の割合は大きくなります。

密度と温度の両方が関係してきますので、説明が分かりにくいかもしれません。

最後に中性の不純物によってもキャリアの散乱は受けますが、この場合の移動度は温度にはよらないことが示されています。

散乱機構と移動度の関係式

格子振動∝m*^(-2/5)・T^(-3/2)
イオン化不純物∝m*^(-1/2)T^(3/2)
中性不純物∝m*

m*:有効質量
T:絶対温度

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げら...続きを読む

Qラウエ条件とブラッグ条件

ラウエ条件からブラッグ条件を導出することについて躓いているので教えてください。

散乱される波数ベクトルをs 、基本ベクトルをa とするとラウエ条件は
(1) s・a = 2πn n∈整数
ですが、(1)の左辺の内積を書き換えると
(2) |s||a|cosθ = 2πn
となり、更に波数ベクトルを波長で表せば
(3) (2π/λ)|a|cosθ = 2πn
これを更に書き換えれば
(4) |a|cosθ = nλ
これがブラッグ条件に相当する、とX線回折の本には書いてあるのですが、ブラッグ条件は一般的に
(5) 2d sinθ = nλ
のようにサインの形で書かれておりどうやって一致させているのかが分からず困っております。
角度の取り方がラウエ条件を考察する際とブラッグ条件を考察する際に違うのでしょうか?教えていただければ幸いです。

Aベストアンサー

>散乱される波数ベクトルをs 、基本ベクトルをa とする
>とラウエ条件は
>(1) s・a = 2πn n∈整数
この(1)式は逆格子ベクトルと結晶の位置ベクトルの関係式を表していますね。つまり、sを「逆格子ベクトル」とし、dを結晶の位置ベクトルとすると
 s・d=2πn  (2)
が成り立ちます。
ラウエ条件は入射波の波数ベクトルをk1、反射波の波数ベクトルをk2、逆格子空間の原点から〈hkl)なる逆格子点に至るベクトルをs(hkl)とすると
  s(hkl)=△k  (3)
で表されます。ここでs(hkl)は
s(hkl)=ha* + kb* + lc*
で定義され、sは実格子の格子面(hkl)に垂直で大きさ|s|は(hkl)面の面間隔d(hkl)の逆数に等しいという性質をもっています(a*,b*,c*は逆格子ベクトル)。
いま、弾性散乱を仮定しますので
 |k1|=|k2|=|k|  (4)
とおけます。すると△kは(絵を書けばよく分かる)
 △k=2ksinθ  (5)
となります。波数ベクトルkはs方向を向いていますね。(3)より
 2ksinθ=s  (6)
両辺にベクトルdをかけると、(2)を使って  
 2kdsinθ=s・d=2πn  (7)
また、k=2π/λ であるから(7)は
 2(2π/λ)dsinθ=2πn
これから
 2dsinθ=nλ (8)
でいいと思いますが。

>散乱される波数ベクトルをs 、基本ベクトルをa とする
>とラウエ条件は
>(1) s・a = 2πn n∈整数
この(1)式は逆格子ベクトルと結晶の位置ベクトルの関係式を表していますね。つまり、sを「逆格子ベクトル」とし、dを結晶の位置ベクトルとすると
 s・d=2πn  (2)
が成り立ちます。
ラウエ条件は入射波の波数ベクトルをk1、反射波の波数ベクトルをk2、逆格子空間の原点から〈hkl)なる逆格子点に至るベクトルをs(hkl)とすると
  s(hkl)=△k  (3)
で表されます。ここでs(hkl)は
...続きを読む

Qベクトル場の面積分に関してです

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

Aベストアンサー

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑...続きを読む

Q半導体の伝導型判定の方法

物理の基礎実験で半導体のホール測定をするなどして基本的なホール係数、担体濃度など測るなどしました。
それで、磁場、電場をかけてホール係数を測定すると、その正負によりp型またはn型が判定できるのですが、「質問」として半導体の電動型はホール測定をしなくても熱起電力の測定により判定できるがなぜかという問いがあり調べているところです。
半導体の基礎的な特徴は実験でわかったのですが、あまり突き詰めたところはまだわかりません。
わかりやすい説明またはURLの紹介をいただけるとありがたいです。
よろしくお願いします。

Aベストアンサー

d9win さんが主にテクニカルなことを書かれておられますので,
私は少し原理的なことを.

測定というのは,対象物質になにか問いかけをして,
それに対する応答を見ていることになります.
例えば,電圧をかけるという問いかけをして,電流という応答を見れば,
その比例係数がコンダクタンス(電気抵抗の逆数)ということになります.

もう少し詳しく見るなら,
(A) 電圧をかける(問いかけ)
=(1)=>
(B) 担体を動かそうとする力(駆動力)
=(2)=>
(C) 担体が動く
=(3)=>
(D) 担体の動きが電流として検知される
です.

で,担体の符号を変えたときに,
(1)(3)のステップで向きが変わるかどうかを考えればよいのです.
(2)のステップでは力の方向に担体が動きますから,
符号など関係ありません.
普通に電圧 E をかけて電流を流す場合ですと,担体電荷 q の符号を変えると
(1) で符号が変わる(力が F=qE だから)
(3) で符号が変わる(担体が速度 v で動けば,電荷の流れは qv だから)
というわけで2度符号が変わり,結局 q の符号にはよらなくなります.
つまり,電気抵抗を見ていては担体の電荷の符号は判定できません.

では,ホール効果で判定できる理由は?
ホール効果は,電流が流れている状態でさらに磁場をかけます.
つまり(A)が磁場.
ローレンツ力が F = q(v×B) で,上にあるように v も符号を変えますから.
(1) は符号が変わりません.
(3) は当然符号が変わります.
したがって,結果的に符号が変わりますので,
ホール電流(実際はホール電圧として検知しますが)の向きで担体符号の判別ができます.

熱起電力だと?
(A)が温度差,というわけです.
高温部から低温部へ担体が拡散しますので,それは電荷には関係ありません.
つまり(1)は符号を変えなません.
(3) は当然符号が変わります.
したがって,結果的に符号が変わり,
熱起電力の向きで担体の電荷が判定できます.

d9win さんが主にテクニカルなことを書かれておられますので,
私は少し原理的なことを.

測定というのは,対象物質になにか問いかけをして,
それに対する応答を見ていることになります.
例えば,電圧をかけるという問いかけをして,電流という応答を見れば,
その比例係数がコンダクタンス(電気抵抗の逆数)ということになります.

もう少し詳しく見るなら,
(A) 電圧をかける(問いかけ)
=(1)=>
(B) 担体を動かそうとする力(駆動力)
=(2)=>
(C) 担体が動く
=(3)=>
(D) 担体の動きが電流として...続きを読む

Qフェルミエネルギー

フェルミエネルギーってどんなエネルギーのことですか??物理辞典とかを読んでも難しくてよくわかりません。わかりやすく説明おねがいします!

Aベストアンサー

長々と失礼致します。


電子のように
・粒子一つ一つに区別は出来ない
・一つの状態には一つの粒子しかは入れない
という性質の粒子を フェルミ粒子(ex陽子)といいます。

このフェルミ粒子は、フェルミディラック分布にしたがった確立で存在します。

f(ε)=1/[exp{(εーεF)/kT}+1]  ・・・☆
     f:フェルミ関数(運動エネルギーεをもつ粒子の存在確立)
     ε:粒子の運動エネルギー
     εF:フェルミエネルギー
     k:定数
     T:温度

☆式のεにフェルミエネルギーを入れると、粒子の存在確立が1/2になりますね。
ここで、温度T=0(絶対温度)の時を考えてみると、
運動エネルギーが、フェルミエネルギー以下の場合はf=1、フェルミエネルギー以上ではf=0となります。

ちなみに、粒子一つ一つを区別する事は出来ないけれど、一つの状態にいくつも粒子が入る事が出来るものをボーズ粒子(ex.光子)といいます。


電子はパウリの排他原理(排他律)にしたがい、一つの準位には一つの電子しか入れません。
下の準位から一つ一つ電子が埋まってゆき、その電子が詰まっている最大の準位がフェルミレベルで、このエネルギーをフェルミエネルギーといいます。
金属の場合、フェルミエネルギーは、荷電子帯の中にありますが、半導体の場合は荷電子帯と伝導帯の間にあります。
真性半導体の場合、荷電子帯の天井と伝導体の底辺のちょうど真ん中にあります。

長々と失礼致します。


電子のように
・粒子一つ一つに区別は出来ない
・一つの状態には一つの粒子しかは入れない
という性質の粒子を フェルミ粒子(ex陽子)といいます。

このフェルミ粒子は、フェルミディラック分布にしたがった確立で存在します。

f(ε)=1/[exp{(εーεF)/kT}+1]  ・・・☆
     f:フェルミ関数(運動エネルギーεをもつ粒子の存在確立)
     ε:粒子の運動エネルギー
     εF:フェルミエネルギー
     k:定数
     T:温度

...続きを読む

Qeのマイナス無限大乗

lim(t→∞) 1-e^(-t/T)
T:定数

というのがあって、極限値が1になることは手計算で分かったのですが、
数学的に1になる理由が分かりません。

e^(-∞)=0になる理由を数学的に教えてください。

Aベストアンサー

e^(-n) = (1/e)^n
であり、
0<|1/e|<1
だから

Q面心立方と体心立方の逆格子

固体物理の勉強をしています。
体心立方構造の(hkl)面の逆格子点 g*=ha* + kb* + lc*を逆空間で描くと面心立方構造になるらしいのですが、理由がわかりません。
分かる方いましたら、教えてください。お願いします。

Aベストアンサー

単純な計算だけで分かります。
体心立方格子のユニットベクトルは
a1=(-a/2,a/2,a/2), a2=(a/2,-a/2,a/2), a3=(a/2,a/2,-a/2)
です。aは格子定数です。
逆格子ベクトルは b1=2π(a2x a3)/(a1(a2xa3)) などですから、単純に計算すれば
b1=2π/a(0,1,1) , b2=2π/a(1,0,1), b3=2π/a(1,1,0)
となり、これは面心立方格子のユニットベクトルです。


人気Q&Aランキング

おすすめ情報