仕事を頑張る人のおしりトラブル対策

電気陰性度はフッ素が最大であるというのはなんとなく理解できるのですが、閉殻構造を持つ希ガスのクリプトンは酸素・塩素・窒素に次いで電気陰性度が大きいですよね。

その理由は何でしょうか?
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

オールレッド・ロコウの電気陰性度χARを使うと、クリプトンの電気陰性度が大きいのは(最外殻電子の感じる)有効核電荷が大きいから、と一応の説明ができます。



ウィキペディアにあるχARの式を見ると、有効核電荷が大きいほどχARは大きく、共有結合半径が大きいほどχARが小さくなることが分かります。

典型元素の有効核電荷は、同じ周期なら周期表の右に行くほど大きくなります。ものすごく荒い近似では、最外殻電子の感じる有効核電荷は12~18族では族番号-10です。つまり希ガスの有効核電荷は同周期のハロゲンのそれよりも大きくなります。

典型元素の共有結合半径は、同じ族なら周期表の下に行くほど大きくなります(最外殻が大きくなるため)。また、同じ周期なら周期表の右に行くほど小さくなる傾向があります(有効核電荷が大きくなるため)。つまり希ガスの共有結合半径は同周期のハロゲンのそれよりも小さくなる傾向があります。

これらのことから、同じ周期の希ガスとハロゲンのχARを比べると、希ガスの方が大きくなることが分かります。つまりクリプトンのχARは臭素のχARよりも大きくなります。ポーリングの電気陰性度χPの大きさの順序は、χARと全く同じ順序になるわけではありません。けれども、χPもχARも、分子中の原子が共有結合電子対を引き付ける強さを表している、という点では同じです。ですので、オールレッド・ロコウの考え方でχPの順序を説明しても、まあそう悪くはないんじゃないかなと思います。分子中の原子が共有結合電子対を引き付ける度合を表す量としては、オールレッド・ロコウの方が直接的ですしね。


> HeやNeに数値が出ていないことも気になります・・・

この理由は非常に明解です。HeやNeが化合物を作らないためです。原子 A と原子 B の結合エネルギーの実測値 E(A-B) がなければχPは計算できませんから、化合物を作らない元素の電気陰性度は、ポーリングの方法では計算できません。
    • good
    • 1
この回答へのお礼

大変詳しくご回答ありがとうございます。
明快な説明ですね、
KrやXeが化合物を作るというのは知りませんでした。
そこで計算上数値が出てくるのですね。

ご教授ありがとうございました。

お礼日時:2014/07/31 21:43

電気陰性度とは、共有電子対を引きつける強さであるので、


本来は希ガスに対しては定義されないものだと思います。

電気陰性度を最初に提唱したのはポーリングですが、
マリケンやオールレッドもいろんな考え方を提唱しています。
現在ではオールレッドの公式に係数をかけてポーリングの値に
近づけたものが主流ですが、マリケンの公式などではイオン化エネルギー
と電子親和力で算出するので、希ガスでも定義できるようになります。
http://ja.wikipedia.org/wiki/%E9%9B%BB%E6%B0%97% …
    • good
    • 1
この回答へのお礼

回答ありがとうございます。
わたしもwikipediaの説明を見ての疑問でした。
ポーリングの稿の表からです。

計算上そうなりますということで、実際の化学結合に寄与する電気陰性度と比例はしないということなのでしょうか?

HeやNeに数値が出ていないことも気になります・・・

お礼日時:2014/07/30 00:15

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q安定性が第三級>第二級>第一級になるのは何故?

学校の課題で、安定性がこのようになるのは何故なのか説明しなければいけないのですが、教科書(「パイン有機化学I」p202)を読んでもよくわかりません。

超共役や誘起効果が関わると思うのですが、それをどのように理解したら「第三級>第二級>第一級」と安定性が説明できるんでしょうか??

わかりやすいHPなどでも結構です。
急ですが、明日中にお願いします。

Aベストアンサー

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴においては、単結合が切れたような構造は考えませんが、超共役というのは、C-H結合の切れた構造を含む共鳴のようなものと考えればわかりやすいと思います。
図はパインの教科書にも書かれていると思いますが、C-H結合が切れた構造においては、形式的に、その結合に使われていた電子対が、正電荷を持っていた炭素原子に移動して、その正電荷を中和しています。その結果、正電荷は、切れたC-H結合を有していた炭素上に移動します。このことは、共鳴の考え方によれば、超共役によって、正電荷が分散した(非局在化した)ということになり、安定化要因になります。

要するに、超共役というのは、単結合の切れたような構造を含む共鳴のようなものであり、その構造がカルボカチオンの正電荷を非局在化させ、安定化に寄与するということです。正電荷を持つ炭素に結合しているアルキル基の数が多いほど、上述の超共役が起こりやすくなり、カルボカチオンが安定化されるということです。

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴...続きを読む

Q電子親和力・電気陰性度と希ガス

第3周期の元素の原子の中で電子親和力・電気陰性度が最大のものと最少のものを答えるという問題があるのですが。

電子親和力:最大Cl 最少Na
電気陰性度:最大Cl 最少Na

であってるでしょうか?希ガスの立ち位置が調べたのですがよくわかりません。

Aベストアンサー

電子親和力の最小はArです
http://ja.m.wikipedia.org/wiki/%E9%9B%BB%E5%AD%90%E8%A6%AA%E5%92%8C%E5%8A%9B
一覧が載っています。

希ガスには電気陰性度の概念がありません。
最外殻電子が満ちているからです。
電子親和力は電子を1つ与えることを考えるので
希ガスも考えることになります。

イオン化エネルギーとともに
しっかり理解なさってください
http://m.chiebukuro.yahoo.co.jp/note/n50747

Q原子価結合法と分子軌道法

原子価結合法と分子軌道法の違いが
いまいち分かりません。
数式ばかり並べられているのを見ても
どこがどう違うのかを言葉でうまく表現出来ません。
本なども読んでみたのですが、どれも難しすぎて、明確にどこがどう違うのかが分かりません。
どなたか分かりやすく、これらの違いを説明してくださいませんか?

Aベストアンサー

レスが付かないようなので、一言。
このサイトのココ↓
http://okwave.jp/kotaeru.php3?q=561839
に大変詳しく、分かりやすい解説が載っていますよ。一度ご参照してみてください。

参考URL:http://okwave.jp/kotaeru.php3?q=561839

QCO2の混成軌道

CO2のVB法でC]haSP混成軌道でOがSP2混成軌道になるのがよく分かりません。OはSP軌道ではいけないんですか?

Aベストアンサー

VB法とか関係なしに電子対が1つあると軌道が一つ増えます。
軌道は、s→p(x)→p(y)→p(z)→d・・・と増えていきます。

ここで、二酸化炭素の結合状態を考えます
O=C=O
ですね?これを電子式であらわすと
http://www.miyazaki-c.ed.jp/miyazakiminami-h/media/elearn/bakegaku/co2.gif
になります。

酸素の周りには、電子対が3つなので、軌道三つ分(SPP混成軌道)
炭素の周りには、電子対は2つなので、軌道二つ分(SP混成軌道)
になります。


別の例
水 H-O-H
http://www.miyazaki-c.ed.jp/miyazakiminami-h/media/elearn/bakegaku/h2o.gif

水素の周りの電子対は1つ:S軌道
酸素の周りの電子対は4つ;SPPP混成軌道(SP3混成軌道)


メタン CH4
http://www.miyazaki-c.ed.jp/miyazakiminami-h/media/elearn/bakegaku/ch4.gif

炭素の周りの電子対4つ:SPPP混成軌道(SP3混成軌道)
水素の周りの電子対1つ:S軌道


ちなみに「混成軌道」っていうのは2つ以上の軌道が混じってることです。(SP混成軌道とか)
なので、1つの軌道しかないS軌道はS混成軌道なんて言いませんよ。

VB法とか関係なしに電子対が1つあると軌道が一つ増えます。
軌道は、s→p(x)→p(y)→p(z)→d・・・と増えていきます。

ここで、二酸化炭素の結合状態を考えます
O=C=O
ですね?これを電子式であらわすと
http://www.miyazaki-c.ed.jp/miyazakiminami-h/media/elearn/bakegaku/co2.gif
になります。

酸素の周りには、電子対が3つなので、軌道三つ分(SPP混成軌道)
炭素の周りには、電子対は2つなので、軌道二つ分(SP混成軌道)
になります。


別の例
水 H-O-H
http://www.miyazaki-c.ed.jp/mi...続きを読む

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

Q三中心四電子結合

三中心四電子結合とはなんでしょうか?
なるべく噛み砕いて教えていただきたいです(・_・;)

Aベストアンサー

読んで字のごとく「3個の原子を 4個の電子で結び付ける」結合のこと. 典型的には XeF2/XeF4/XeF6 や I3^- などで見られます.
分子軌道的には
3個の原子から 3個の軌道が提供されて 3個の分子軌道 (エネルギー順位の低い方から結合性軌道・非結合性軌道・反結合性軌道) になる. これらの原子から出てくる 4個の電子は結合性軌道と非結合性軌道で対になることにより全体でエネルギーが低い安定な状態になる.
という感じでしょうか.

Q二酸化硫黄 SO2 の構造について

SO2 は配位結合が関係している、と聞いたのですが、どのような構造
になりますか?SO2は配位結合が関係していて、折れ線形で、極性分子だと聞きました。どういうことか、さっぱりわかりません。
すみませんが、詳しく教えてください。

Aベストアンサー

SO2 の電子式は以下のようになります(MSゴシックなどの等幅フォントで見てください)。

 ‥  ‥  ‥
:O::S::O:   電子式(a)

 ‥  ‥ ‥
:O::S:O:    電子式(b)
      ‥

価標を使って結合を表すと、構造式はそれぞれ

 ‥ ‥ ‥
:O=S=O:   電子式(a)に対応する構造式

 ‥ ‥ ‥
:O=S→O:   電子式(b)に対応する構造式
     ‥

のようになります。

構造式で書くと明らかなように、電子式(a)では、SとOの間の結合は両方とも二重結合になっていて、配位結合はありません。それに対して、電子式(b)では、片方のSO結合は二重結合ですが、他方の結合が配位結合になっています。

電子式(a)と電子式(b)のどちらが正しいのか?については、少し難しい話になるのですけど、#1さんのリンク先にあるウィキペディアの解説によると、
・二酸化硫黄 SO2 の電子式は配位結合を使わないで電子式(a)のように書くのがよい
・オゾン O3 の構造式は配位結合を使ってO=O→Oのように書くのがよい
ということになります。

「電子対反発則」を使うと、SO2分子が折れ線形になることを、SO2の電子式から説明できます。電子対反発則についての簡単な説明は、ネット検索ですぐに見つかると思います。電子対反発則にそれほど精通しなくても、
・H2Oの電子式から、H2O分子が折れ線形になることを説明できる
・CO2の電子式から、CO2分子が直線形になることを説明できる
ようになれば、SO2分子が折れ線形になることを、電子対反発則から説明できるようになります。

SO2が極性分子になることは、「二酸化炭素 CO2 が極性分子に“ならない”こと」が理解できれば、これらの分子の形から簡単に分かると思います。

SO2 の電子式は以下のようになります(MSゴシックなどの等幅フォントで見てください)。

 ‥  ‥  ‥
:O::S::O:   電子式(a)

 ‥  ‥ ‥
:O::S:O:    電子式(b)
      ‥

価標を使って結合を表すと、構造式はそれぞれ

 ‥ ‥ ‥
:O=S=O:   電子式(a)に対応する構造式

 ‥ ‥ ‥
:O=S→O:   電子式(b)に対応する構造式
     ‥

のようになります。

構造式で書くと明らかなように、電子式(a)では、SとOの間の結合は両方とも...続きを読む


人気Q&Aランキング

おすすめ情報