お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ∫(∞~-∞ )cos(2x)/(x^2+1)^2 の積分のやり方を教えて欲しいです。 途中の計算の 1 2022/07/24 01:37
- 物理学 物理の問題です。 1 2022/12/20 23:04
- 数学 次の複素積分と実積分の値を求めよ。 1 2023/01/03 12:04
- 数学 次の関数を微分せよ y=sin^4 x cos^4 x という問題で自分は積の微分法で微分して y' 3 2023/05/17 20:38
- 数学 写真の数学の質問です。 ①のとき、tanθを求めよという問題です。 cosで割るとと書いてあるのです 1 2023/07/16 16:58
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 座標変換について 1 2022/08/04 16:42
- 数学 マクローリン展開を簡単にする方法を教えてください 2 2023/07/10 16:15
- 数学 フーリエ変換についての質問です。 h(t)=cos(ω0t)×cos(ω1t) のフーリエ変換を教え 1 2022/07/23 17:37
- 数学 微分積分の二重積分についての問題がわからないです。 1 2022/07/17 02:36
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
「覚え間違い」を教えてください!
私はかなり長いこと「大団円」ということばを、たくさんの団員が祝ってくれるイメージで「大円団」だと間違えて覚えていました。
-
ちょっと先の未来クイズ第5問
日本漢字能力検定協会が主催し、12月12日に発表される、2024年の「今年の漢字」に選ばれる漢字一文字は何でしょう?
-
【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
【お題】 ・西暦2100年の「小学生のなりたい職業ランキング」で1位になった職業は何か教えてください
-
sinωTをTで積分。
数学
-
微分・積分について
工学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
△ABCにおいてAB=4、BC=6、CA=5...
-
角の三等分線の長さ
-
複素数の問題について
-
楕円錐の、斜め断面は、円?
-
1/ a + bcosx (a,b>0)の 不定積...
-
1+cosθをみると何か変形ができ...
-
cos²140°=cos²40°になる理由が...
-
数学の質問です。 0≦θ<2πのとき...
-
数3です。 第n項が次の式で表さ...
-
三角関数
-
cos2x=cosx ってなにを聞かれ...
-
cos^3tを微分するときはどうや...
-
4・9-2・2・3・cos(180-B)が →...
-
cos(有理数*2π)=有理数となるの...
-
フーリエ級数についてです この...
-
フーリエ級数|cosx|
-
三角関数
-
eの2πi乗は1になってしまうんで...
-
複素数の実部と虚部
-
積分公式の証明
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
数学の質問です。 0≦θ<2πのとき...
-
cos2x=cosx ってなにを聞かれ...
-
フーリエ級数|cosx|
-
cos(2/5)πの値は?
-
cos60°が、なぜ2分の1になるの...
-
積分
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
三角関数で、
-
△ABCにおいてAB=4、BC=6、CA=5...
-
三角関数
-
1/ a + bcosx (a,b>0)の 不定積...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
cos40°の値を求めています。
-
cos2θ+cosθ+1=0
-
[高1数学A 三角比の相互関係] ...
-
極座標の偏微分について
-
cos(θ-π/2)=cos(π/2-θ)になるの...
おすすめ情報