a=1、<an+1>=<an>-1/<an>+3で定義される数列{an}について、
(1)<bn>=1/<an>+1とおくとき、<bn+1>と<bn>の関係式を求めよ。
(2)一般項{an}を求めよ。
(1)なのですが、
<bn>=1/<an>+1の分母をはらい、<bn>で両辺を割り、
<an>+1=1/<bn>として、代入という手順になりますよね。
(問題解説にはそうありました。)
1/<bn+1>=2/2<bn>+1
※両辺の逆数をとって※
<bn+1>=2<bn>/2+1/2
<bn+1>=<bn>+1/2 ・・・(答)
この※部分なのですが、逆数を取るということは
「分母と分子をひっくり返す」とありました。
こうすることでも 「関係式に誤差が生じない」 というの
が不思議です。
例えば、
3x=6 x=2 という式があったとします。
これは逆数をとると
1/3x=1/6 x=2 となり、同じ答えが出てきますよね。
この問題の場合の式の逆数をとるということは、↑これと
同じ原理のことなのでしょうか。
自分なりに調べてみたのですが、
「逆数とはかけて1になるような2つの数」ということと、
この問題の式が関係してるということが漠然としています。
それならば、最初の<bn>=1/<an>+1を変形するとき、
わざわざ両辺を<bn>で割らなくても、逆数をとって代入
するという手順を踏んでもいいのではないかと思ったので
すがいかがでしょうか。
よろしくお願いします。
No.1ベストアンサー
- 回答日時:
悩んでいることがイマイチよくわからないのですが...。
逆数を取るというのは、
「a=b」⇔「1/a=1/b」
というだけのことですが。
なので、
>>この問題の場合の式の逆数をとるということは、↑これと同じ原理のことなのでしょうか。
→そうです。
また、
>>それならば、最初の<bn>=1/<an>+1を変形するとき、
わざわざ両辺を<bn>で割らなくても、逆数をとって代入するという手順を踏んでもいいのではないかと思ったのですがいかがでしょうか。
→いいですよ。単に手順の問題です。
ご回答をありがとうございます。
「何の計算もなく」ただ単に「ひっくり返すだけ」と参考書に
書いてありましたので、こんなのでいいのかとふと疑問に思ってしまったのです。
ありがとうございました。
No.2
- 回答日時:
>「分母と分子をひっくり返す」とありました。
>こうすることでも 「関係式に誤差が生じない」 というの
>が不思議です。
例えば、
X=Y
という関係式があったとき、「1/X=」を計算してみようと思ったら、
XにYを代入すればいいわけですから、
1/X=1/Y
が成り立つわけです。
それ以外は、式変形のやり方だけのことなので、質問者さ
んの考え方でまちがいないことは、#1さんの書いているとおりです。
(補足)
ただし、分母になりますので、
X=Y≠0という条件が必要となります。
この問題においては、<bn>=1/<an>+1と仮定しているので、
<an>+1≠0を厳密に記述しようとすると面倒です。
ご回答をありがとうございます。
なるほど、そういうことだったのですね。
ただ単にひっくり返すだけという手順に、一体どんなしくみになっているのか
さっぱりわかりませんでした。
そこで、簡単な方程式にあてはめて考えてみたら、逆数にする前と
同じ答えが出てきたので、こういうことなのかなと確認もしたかったので。
安心できました。
ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 上三角行列のn乗の証明 2 2023/07/23 21:45
- 数学 次の数列{an}の一般校を求めよ 0、5、16、33、56… 解説の写真の部分がわかりません、 数列 1 2023/06/16 15:11
- 数学 数列 三角関数 赤文字が答えです 2番3番手も足も出ません。解き方分かる方教えてくれませんか? an 2 2023/02/16 17:43
- 数学 初項3、公差6の等差数列{an}と、初項1、公差4の等差数列{bn}がある。この2つの数列に共通に含 2 2022/03/24 18:57
- 数学 a1=a b1=b an+1=5an-bn cn=an+1-an (n=1、2、3…) を満たしてい 2 2022/11/05 17:48
- 数学 数学3 無限数列 画像の例題93(1)について質問があります。 なぜbnとおいたんですか...?? 3 2022/07/10 13:50
- 大学・短大 フーリエの問いで、範囲がこの場合3つ出来ると思うのですがこの場合はanとbnを求めれば良いのですか? 1 2023/01/28 12:59
- 数学 数学 問題が理解できないんですけど、この場合bnってなんですか?? わかりやすく教えてくれると助かり 2 2022/06/13 19:16
- Visual Basic(VBA) VBA Bookの表示、非表示 1 2022/09/16 20:44
- 数学 数学の問題教えてください! 「図形Aの中に面積がBの四角形ををn個入れる。このとき、図形Aに曲線が存 1 2022/09/21 11:10
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
「覚え間違い」を教えてください!
私はかなり長いこと「大団円」ということばを、たくさんの団員が祝ってくれるイメージで「大円団」だと間違えて覚えていました。
-
許せない心理テスト
私は「あなたの目の前にケーキがあります。ろうそくは何本刺さっていますか」と言われ「12本」と答えたら「ろうそくの数はあなたが好きな人の数です」と言われ浮気者扱いされたことをいまだに根に持っています。
-
とっておきの「まかない飯」を教えて下さい!
飲食店で働く方だけが食べられる、とっておきの「まかない飯」。 働いてらっしゃる方がSNSなどにアップしているのを見ると、表のメニューには出てこない秘密感もあって、「食べたい!!」と毎回思ってしまいます。
-
両方を逆数にしてもイコール関係は変わらないですよね!?
数学
-
「逆数」って、何のためにあるのですか?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
答えが2になる複雑な数式を探...
-
3のn-1乗はどうやって解けばよ...
-
指数方程式についてです。 2^x+...
-
xが分子の足し算、どうやるんで...
-
-0.1と-0.01ってどっちが大き...
-
平方根を取る とはどういう...
-
一次不定方程式(ユークリッド...
-
不等式について
-
2のX乗+2の−X乗の解き方がわ...
-
なぜ両辺が負の時に両辺を二乗...
-
a1=1 , an+1 = √1+an (n=1...
-
両辺から自然対数をとった時
-
xのa乗をx=の形にしたい
-
多点を通る円の中心
-
割合の問題です。
-
54mm×86mmは何対何ですか?
-
高校数学 数列
-
指数関数の両辺の対数をとる・...
-
ベクトルの問題(△ABCの外心…O,...
-
2乗しても同値性が崩れないと...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
xが分子の足し算、どうやるんで...
-
2のX乗+2の−X乗の解き方がわ...
-
3のn-1乗はどうやって解けばよ...
-
なぜ両辺が負の時に両辺を二乗...
-
指数方程式についてです。 2^x+...
-
答えが2になる複雑な数式を探...
-
一次不定方程式(ユークリッド...
-
平方根を取る とはどういう...
-
不等式について
-
54mm×86mmは何対何ですか?
-
-0.1と-0.01ってどっちが大き...
-
恒等式の両辺を微分して得られ...
-
数学ではよく、両辺を2乗します...
-
2乗しても同値性が崩れないと...
-
不等式の扱い方
-
分母分子に未知数のある方程式...
-
ルート(平方根)の外し方
-
xのa乗をx=の形にしたい
-
(2)で、両辺を積分して、と書い...
-
a1=1 , an+1 = √1+an (n=1...
おすすめ情報