ママのスキンケアのお悩みにおすすめアイテム

条件付き確率で、Pa(B)とP(A∩B)の違いがよく分かりません…。
Pa(B)は事象Aが起こったときに事象Bが起こる確率で、P(A∩B)は事象Aが起こりかつ事象Bが起こる確率ですよね。
ベン図を書いてみたのですが、どちらも同じことではないのですか?
よろしくお願いします。

「条件付き確率で、Pa(B)とP(A∩B)」の質問画像

A 回答 (6件)

質問者のベン図の表記を使います。



夫々の事象の数を|A|、|B|、|A∩B|、|U|とする。
事象Aが起きる確率 P(A)=|A|/|U|             (1)
事象Bが起きる確率 P(B)=|B|/|U|             (2)
事象Aと事象Bが起こる確率 P(A∩B)=|A∩B|/|U|      (3)
事象Aが起きた下で事象Bが起きる確率 Pa(B)=|A∩B|/|A|  (4)

(4)式に(3)式を代入
Pa(B)= P(A∩B)|U|/|A|
これに(1)式を代入すると
Pa(B)=P(A∩B)/P(A)

<ベン図を書いてみたのですが、どちらも同じことではないのですか?>
はいその通りです
    • good
    • 0

質問の図の中の式は正しいですよ。



沢山試行したとき、結果の中からAが起きた結果のみを注目
その中のBの発生割合がPA(B)
    • good
    • 0

P(A∩B)は事象Aが起こりかつ事象Bが起こる確率ですよね。



違います。
集合P(A∩B)は事象Aと事象Bが同じ時の事象の数を表した記号です。確率ではありません。
    • good
    • 1

#2追加


ベン図は違っている
A⋏Bなどの横にPが付いているのがおかしくしている原因
Pではなく、na(B)とn(A∩B)とすれば良いと思います。(na(B)という表現は正式ではないかもしれませんが)
#2の例でいえばn(U)=54x53通り
n(A)=13x51通り ←←←1回目にクラブ、2回目はなんでも良いから13x53
n(B)=13x3x13+13x12= 51x13 ←←←1回目にハート以外x2回目ハート+1回目にハートx2回目もハート
そして、共通部分は
「1回目にクラブ、2回目にハートを引く」
または
「1回目にクラブを引くという事が起こった場合、2回目にハートを引く」
を表しておりいずれも13x13通り
ただし確率にすると違いが出てきて
「1回目にクラブ、2回目にハートを引く確率」=13x13/52x51
1回目にクラブを引くという事が起こった場合、2回目にハートを引く確率=(13/51) ←←← 既に1回目にクラブは起きた(確定した)ことだからその確率はあえて書けば「1」、2回目の確率は残りのカード51マイからハートを引く確率で13/51
見て分かるとおり分母が異なります!
    • good
    • 0


52枚のトランプのカードを1回に1枚ずつ、計2回引く場合
1回目にクラブ、2回目にハートを引く確率は(13/52)x(13/51) これがP(A⋏B)にあたる
一方 1回目にクラブを引くという事が起こった場合、2回目にハートを引く確率は(13/51) これがPa(B)にあたる。
    • good
    • 0

母体(分母)が異なります。


P(A∩B)は、母体は全体(U)です。

これに対して、Pa(B)の母体は、Aになります。
Aが発生した中で、Bとなる確率を求めることになります。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q解無しとかってどうやって判断するんですか?

解無しとかってどうやって判断するんですか?

Aベストアンサー

上の例なら
y=x²-14x+49とするとそのグラフは画像のようになる
ここで、このグラフ上にx座標がtである点Pを考える
Pのy座標はy=x²-14x+49にx=tを代入してt²-14t+49であるから
Pの座標は(t,t²-14t+49)である。
でも、文字の種類が何であろうと本質は変わらないから、tを使わずに文字xのままで
放物線y=x²-14x+49上の点Pの座標は(x,x²-14x+49)であると言っても大差はない。
すると、問題の不等式
x²-14x+49<0 の意味は 「(Pの)y座標が0より小さい」ということになる。
これを画像のグラフに移してみると見てみると、「y座標が0より小さくなるような点Pの位置は?」と言う意味になる
しかし、最も低い位置にあるグラフの頂点(7,0)でさえも、y座標=0(0より小さくはない)なので、このグラフにはy座標が0より小さくなるような点Pの位置は存在しない。
つまり、グラフから不等式に戻れば該当するxは無い⇒解無し となります。

同様に考えて 仮にx²-14x+49=0ならば
グラフでは「y座標=0となるような点Pの位置は?」と言う意味になるので
そのような位置はグラフでは(7,0)
式に戻れば該当するxは、x=7(重解) となります。

さらに、仮にx²-14x+49>0ならば
「y座標が0より大きくなるような点Pの位置は?」と言う意味ですから
そのようなPの位置はグラフから(7,0)を除いた全域となり
不等式に戻れば 該当するのはx=7を除く全域⇔x<7,x<x となります。

下の画像の式も同じ要領で考えることが出来ます。^-^

上の例なら
y=x²-14x+49とするとそのグラフは画像のようになる
ここで、このグラフ上にx座標がtである点Pを考える
Pのy座標はy=x²-14x+49にx=tを代入してt²-14t+49であるから
Pの座標は(t,t²-14t+49)である。
でも、文字の種類が何であろうと本質は変わらないから、tを使わずに文字xのままで
放物線y=x²-14x+49上の点Pの座標は(x,x²-14x+49)であると言っても大差はない。
すると、問題の不等式
x²-14x+49<0 の意味は 「(Pの)y座標が0より小さい」ということになる。
これを画像のグラフに移してみると見てみる...続きを読む

Q正の整数a.b.cが a^2+b^2=c^2をみたすとき a.bのいずれかは4の倍数である。 参考書

正の整数a.b.cが a^2+b^2=c^2をみたすとき
a.bのいずれかは4の倍数である。

参考書の解答と自分の解答が全く異なったため採点お願いします。

Aベストアンサー

証明が間違っているかと聞かれるのであれば間違ってはいない。
この方法でやる必要があるのかという話であればない。
どちらがスマートな証明かと聞かれるなら、質問者。

a≡±1mod4⇒a²≡1mod4 ∀a∈Z 等を自明とするかどうかは、微妙かもしれない。
証明も3行x3くらいできるけど、それを加えるとなると、冗長的な部分が出てきて
さほどスマートではなくなるかもしれないけど。

Q数学です。 この円の、赤の斜線の面積ってどうやって求めるんですか?

数学です。
この円の、赤の斜線の面積ってどうやって求めるんですか?

Aベストアンサー

計算が面倒なので、解き方だけでいいですか?
赤の斜線の上の円の半径を求めないと解は得られません。
赤の斜線の上の円の半径は2つの弧の中点からそれらの弦へ垂線を下して、2つの垂線の交点までがその半径になります。
赤の斜線の上の円の弧の中点から弦を通る直線をy軸とし、弦をx軸として、赤の斜線の上の円の弧と赤の斜線の上の円の弧の中点を結ぶ直線はy=44/129x+22です。
この直線の中点を通りy=44/129x+22に垂直な直線はy=-129/44x+bです。
この直線は中点(ー129/4,11)を通るので11=129²/176+bからb=ー14705/176
距離は正の値なので半径r=|b|=14705/176です。
次に赤の斜線の上の円の弦の長さから、余弦定理でcosθをもとめ、更にθを求めると赤の斜線の上の円の弧部分の面積が
求まります。そこから二辺rの二等辺三角形の面積を除けば、赤の斜線の面積が求まります。

Q三角関数です! この()はつけないといけませんか? お願いします!

三角関数です!
この()はつけないといけませんか?

お願いします!

Aベストアンサー

()を付けるのが普通です。
三角関数の表記は、sinθ と sin の後に角の値を示すので、
その値が負であったら符号をそのままに sin-θ という表記が有り得なくもないです。
ただ、sinの直ぐ後に符号が付くことを考えると、正解とするには、採点者の判断になります。
厳しい採点者なら✖でしょうね。
校内のテストなら部分点の可能性が採点者の裁量でありえる。
入試のような校外の試験なら採点基準で✖の可能性が高い。
と私なら考えます。

Q数学の自由研究のような物

自由研究的なので色々な定義(公式、定理も)について書かなければいけないのですが,
何か良い定義ありませんか?(ピタゴラスの定義はもうやりました)お願いします!

Aベストアンサー

円周率の求め方なんてどうですか。
いろんな方法があるんですよ。
全てとは言いません。有名どころの解き方をいくつか調べ比較してみてはいかがでしょう。
「この公式はキレイ」とか「この公式は難解」とかでもいいと思う。
(実際には大学で学ぶような事なんだけど、世の中には小学生・中学生向けに優しく解説した本なども存在するわけで、そんなものを頼ってみるのもありでしょう)

Qn進法の問題です。 なぜbは3の倍数と書いてあるのにb=0の場合も考えているのですか? よろしくお願

n進法の問題です。
なぜbは3の倍数と書いてあるのにb=0の場合も考えているのですか?
よろしくお願いします。

Aベストアンサー

0は3の倍数であり、また、bの範囲(0≦b≦6)に含まれているから。

Q高1の数学です。 この答えであっていますか??? よろしくお願いします。

高1の数学です。
この答えであっていますか???
よろしくお願いします。

Aベストアンサー

過去問に有りました。合ってますね。
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168283903?__ysp=MTAwbembouOCjOOBnzLlnLDngrlCLEPjgYvjgonjgIHmsJfnkINB

Q円の方程式でX2乗+Y2乗=r2乗っていう公式ありますか?

円の方程式でX2乗+Y2乗=r2乗っていう公式ありますか?

Aベストアンサー

それは、中心が原点、半径 r の 円の方程式です!^-^

Qベクトルについて。

各辺の長さが1で底面ABCDが正方形である四角錐O-ABCDがある。辺OBの中点をP、辺ODをt:(1-t) (0<t<1)に内分する点をQとし、平面APQと辺OCの交点 をRとする。 (1)↑ARを↑AP、↑AQ、tを用いて表せ。
(2)四角形APRQの面積をtで表せ。
教えていただけると幸いです。

Aベストアンサー

(1)
基準点と3つの基本ベクトルを適切に定める(解答者任意)
定める例
点OとOA↑,OB↑,OD↑
点AとAO↑,AB↑,AD↑
四角形ABCDの中心(点Hと呼ぶ)とHA↑,HB↑,HO↑

AP↑、AQ↑を上で定めた基本ベクトルで表す

AR↑を(解答者任意に定める文字3つを使って)2つの方法で基本ベクトルで表す
表し方1:文字1つ:点RはOC上の点
表し方2:文字2つ:点Rは3つの点A,P,Qで定まる平面上にある

同じベクトルの基本ベクトルによる表し方は同じ基本ベクトルの係数が同じになるから
連立方程式(3つの方程式)ができるので、解答者が定めた3つの文字が t で表せる

表し方2を t で書いて終了

(2) うまいやり方が思いつかなかったので地道に

一般論 △ABCの面積は、AB↑,AC↑の大きさと内積が計算できれば求められます
(計算が面倒)

この問題 (1)で考えた基本ベクトルの和で各点は表せるのでベクトルの大きさと内積は計算できます

解き方1(面倒な計算が2回)
四角形を2つの三角形に分解して面積を合計

解き方2(面倒な計算が1回)
(1)の結果よりAP'↑=2*AP↑ となる点P'を考えると
四角形APRQの面積は△AP'Q の面積から△PP'Rの面積を引けば求められて
△AP'Qと△PP'Rの面積比が t を使った比で表せることから△AP'Qの面積を求めて比を使って四角形の面積を計算

(1)
基準点と3つの基本ベクトルを適切に定める(解答者任意)
定める例
点OとOA↑,OB↑,OD↑
点AとAO↑,AB↑,AD↑
四角形ABCDの中心(点Hと呼ぶ)とHA↑,HB↑,HO↑

AP↑、AQ↑を上で定めた基本ベクトルで表す

AR↑を(解答者任意に定める文字3つを使って)2つの方法で基本ベクトルで表す
表し方1:文字1つ:点RはOC上の点
表し方2:文字2つ:点Rは3つの点A,P,Qで定まる平面上にある

同じベクトルの基本ベクトルによる表し方は同じ基本ベクトルの係数が同じになるから
連立方程式(3つの方程式)ができるので、解答者が定め...続きを読む

Q(1)1+2+3+…8=36 a+b+c+d=e+f+g+hと同じ数にならなければならない 1+8=

(1)1+2+3+…8=36
a+b+c+d=e+f+g+hと同じ数にならなければならない
1+8=9
2+7=9
3+6=9
4+5=9

となるのでa+b+c+d=1+8+2+7=18…①
e+f+g+h=3+6+4+5=18…②
①+②そして①=②がなりたつので 答えは18

(2)が20分くらい考えましたが分かりませんでした…。
(1)の理論ですが、少しガバガバかもしれません。もし、もっと核心をついた回答ができるよ〜という方がいらっしゃれば回答欄に書いてくれると嬉しいです。

Aベストアンサー

(1)
平面の場合(=魔法陣)の解法の応用ですね。
3×3(1~9など)の場合は1列の和は合計は15(={1~9の合計}/3)になります。
設問のように立体に拡張して、1面の合計をKとすると、
6面の合計は6K
そして6面を合計する段階で各頂点は3回ずつ足しているので、(a+b+c+d+e+f+g+h)×3となります。1~8の数字が1個ずつ配置されているので、
a+b+c+d+e+f+g+h=1+2+3+4+5+6+7+8=36
よって
6K=36×3
K=18
となりますね。

(3)
合計が9になる組み合わせ(1,8)(2.7)(3,6)(4,5)に注目しましょう。
これらが立方体の4本柱(=縦方向の4本)に配置されていなければなりません。
そして、a=1とすると上面には(1,4,7,6)が来なければ合計が18になりませんね。
またこれらの4本柱の合計は同じですので、それぞれを入れ替えても各面の合計は変化しないので交換可能です。
ですから、gに配置できる値は上面でaの対角に来る数字の組になっている数字になるのです。


人気Q&Aランキング