忙しい現代人の腰&肩のお悩み対策!

ラザフォードの考えでいくと、電子が原子核にぶつかってしまうということは
わかったのですが、その他に何か矛盾している点があったらおしえてください。

A 回答 (3件)

原子の中心に小さな正電荷があり、その周囲を電子が回っているというモデルを古典論で検討すると


(1)電子は絶えず電磁波を放出してエネルギーを失い、軌道は次第に小さくなり、最後は中心の正電荷と合体してしまう
(2)このとき放出する電磁波は連続スペクトルとなるはずだが、それは実験事実と合わない
という矛盾が生じます。

量子力学の教科書いくつか探せば「量子力学が確立された歴史」にページを割いてあるものが見つかるはずです。
詳しくは自力でそれらを読んでみることをお勧めします。(「あれ、こんなことが分かったのって結構最近なんだ」と新鮮な発見もあると思いますよ)
    • good
    • 0
この回答へのお礼

回答ありがとうございました。
(2)についてもっと勉強したいと思います。

お礼日時:2001/08/06 20:55

 


 直接的な回答ではありませんが,最近その手の本を読んだところでしたので,ご紹介しておきます。

『「量子論」を楽しむ本 ミクロの世界から宇宙まで最先端物理学が図解でわかる!』
佐藤勝彦 監修,PHP 文庫,2000年
 
    • good
    • 0

以下の参考URLサイトは参考になりますでしょうか?


「原 子 核 物 理 学」
このページの最下段にはレファランスもあります。

ご参考まで。

参考URL:http://www3.justnet.ne.jp/~yoshida-phil-sci/L2_0 …
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qボーアモデルの欠点?

”ボーアモデルは古典力学から量子力学への橋渡しになった初期の量子論である”
ということを聞いたのですが、
量子力学から見た場合、ボーアモデルのどこに欠点(矛盾)があるのでしょうか?

教えてください。お願いします。

Aベストアンサー

> 量子力学から見た場合、ボーアモデルのどこに欠点(矛盾)があるのでしょうか?

 これは現在の知識から見るとって事でしょうか? それとも,当時の知識でって事でしょうか?

 前者でしたら既にある回答で良いのかもしれませんが,後者であれば「当時そこまでの知識があったのでしょうか?」という疑問が。

 手元に『「量子論」を楽しむ本』(佐藤勝彦監修,PHP文庫)がありますが,この中では次の様な事が指摘されています。

●「量子条件」などの仮定を何の根拠もなく持ちだして勝手に使用している点。例えば,「決められた軌道を回る電子がなぜ光を出さないのか」を説明していない。

 当時の物理学では「回転する電子は光を放つ」が常識で,この点がラザフォードの原子模型の欠陥とされていたそうです。が,ボーアはこの欠陥を説明していないそうです。

●ボーアの原子模型は水素原子にしか成り立たない。

 水素原子の次に簡単で,電子2個を持つヘリウム原子の線スペクトルは説明できなかったそうです。後からわかった所では,電子を1個しか持たない非常に簡単な構造の水素原子だったため,ボーアの理論がうまく当てはまったそうです。

参考になれば幸いです。

> 量子力学から見た場合、ボーアモデルのどこに欠点(矛盾)があるのでしょうか?

 これは現在の知識から見るとって事でしょうか? それとも,当時の知識でって事でしょうか?

 前者でしたら既にある回答で良いのかもしれませんが,後者であれば「当時そこまでの知識があったのでしょうか?」という疑問が。

 手元に『「量子論」を楽しむ本』(佐藤勝彦監修,PHP文庫)がありますが,この中では次の様な事が指摘されています。

●「量子条件」などの仮定を何の根拠もなく持ちだして勝手に使用して...続きを読む

Q加速度運動をする粒子は何故電磁波をだすのですか?

高校物理の教科書で疑問点があり、質問させていただきます。
ラザフォードの原子モデルの問題点について記述がありました。

「電子が原子核のまわりを円運動すれば電磁波を放出してエネルギーを失う。」

教科書ではX管によるX線の発生原理や交流電源による電磁波の発生については
習いましたが、円運動する電子が電磁波を出すことは習っておりません。
なのに、いきなりこんなことを言われても…と思ってしまします。

自分なりにいろいろ考えてみましたが、エネルギー保存則を考えてみますと、
0.5mv^2+hν=一定 が成り立つとすると、この速さvはスカラー量ですから
等速円運動をする場合は速さ=一定となり、電磁波が発生することに矛盾して
しまいます。

この点どのように考えればいいでしょうか?よろしくお願いいたします。

Aベストアンサー

>この速さvはスカラー量ですから等速円運動をする場合は速さ=一定となり、電磁波が発生することに矛盾してしまいます。

 速さはスカラーですが、速度はベクトルです。方向を変えると、スカラーとしての速さに変化がなくても、加速度運動になります。なお、運動エネルギーの2乗は正確にはスカラーとしての速さの2乗ではなく、同じベクトルの内積ですが、内積はスカラーとなるため、方向は無関係になります。しかし、お考えのように、

>エネルギー保存則を考えてみますと、0.5mv^2+hν=一定 が成り立つとすると

ということになります。これは、電磁気力が電荷の間に働くという考え方(遠隔作用説)からすれば、そうなりそうです。しかし、遠隔作用説の電磁気学では電磁波の解は出て来ません。

 電磁気学の基本的な方程式として、マクスウェルの方程式がありますね。微分方程式の形で書かれていますが、電荷がその周りに電磁気的な場を作るという考え方(近接作用説)をするため、そのような形式で書かれています。

 近接作用説では遠隔作用説で説明不能の問題が解決されます。電荷の運動量、運動エネルギーについて、遠隔作用説では説明不能の不足分が出るのです。近接作用説では、その不足分が「電荷の周囲の電磁場も運動量、運動エネルギーを持つ」と出て来ます。

 そのため、電磁気学は原則として近接作用説で考えます。遠隔作用説で説明することも多いですが、問題の出ない範囲に限定しなければなりません。お考えの「0.5mv^2+hν=一定」というのは、電荷だけに注目した、つまり遠隔作用説の式です。エネルギー保存則を考えるなら、電荷の周りの電磁場が欠けています。

 遠隔作用説の電磁気学の式では電磁波の解は出てこないのですから、電磁波の解が出てくる近接作用説の電磁気学の式で考える必要があります。そして、電磁波は電荷の加速度運動で出るというのは分かりやすい説明ですが、不正確です。電磁波は電磁場の加速度運動から出て来るのです。電磁波の解の導出は例えば、

http://www.th.phys.titech.ac.jp/~muto/lectures/Gelmg06/Gem_chap13.pdf

で説明されているように出します。上記ページでは「変位電流」ということを前提としています。真っ直ぐな導線を流れる定常電流ではないわけです。電流が流れる導線が真っ直ぐでない、例えば円形電流でも電磁波は出ます。円運動は加速度運動(例えば遠心力を生じますから、慣性運動ではないですね)だから、電磁波は出るのです。

 しかし、導線をコイル状にした電磁石に直流電流を流して、電磁波を観測するということはありません。それは、導線中の電子の速さが極めて遅いからです。時速3センチくらいでしかありません。そこまで遅いため、加速度が極めて小さく、観測できるほどの電磁波が出てこないのです。

 CERNなどの素粒子実験器はリング状のパイプの中で電子や陽子を加速し、光速度に非常に近い速度を得ます。そこまで速いと明らかに電磁波が出ます。速さの変化でも電磁波は出ますが、円運動という加速度運動のせいでも出ます。

 それらの電子や陽子から出てくる電磁波はエネルギーがあるわけですから、どこかからエネルギー供給されているはずです。その電磁波のエネルギーは、電子や陽子の運動エネルギーを奪って、出てきたものです。さらにその先を考えると、電子や陽子を加速しているエネルギーが電磁波として出て行ってしまうわけですね。

 そのエネルギーロスのため、リング状の加速器では限界に達しつつあります。加速で与えら得るエネルギーが全部電磁波となって出て行ってしまい、加速できないという状態になります。そのため、直線状で素粒子を加速するリニアコライダーの建造計画が持ち上がっているわけです。電子や陽子をもっと加速できないと、実験できないことがあるからです。

 原子のラザフォードモデルに立ち返りますと、電子より陽子のほうがはるかに重いため、電子が陽子の周りを回っているとしてよいです。しかし原子のサイズを考えると電子は陽子に極めて接近しており、電子に働く電磁気力は非常に強いとせざるを得ません。

 だとすると、電子が陽子の周りを公転する遠心力でバランスを保っているとして、その公転速度は非常に速いものになります。円運動は加速度運動ですから、明らかに電磁波が観測できるほどの公転速度です(大雑把には、公転直径を直線状に行き来していると考えてもよい)。

 原子は素粒子加速器のように、外からエネルギーを供給されてはいません。そうなると、陽子の周りを回る電子の運動エネルギーと位置エネルギーから電磁波は出て来ざるを得ません。そうなると、電子は陽子に落ち込んでしまうはずです。

 しかし、原子は安定して存在しているし、電磁波も出したりはしていません。それなら、電子が原子の周りを公転しているという考え方がおかしいわけです。それを解決するため、電子は公転ではなく陽子の周りの波動と考えるようになり、さらに量子力学へと発展していきます。

>この速さvはスカラー量ですから等速円運動をする場合は速さ=一定となり、電磁波が発生することに矛盾してしまいます。

 速さはスカラーですが、速度はベクトルです。方向を変えると、スカラーとしての速さに変化がなくても、加速度運動になります。なお、運動エネルギーの2乗は正確にはスカラーとしての速さの2乗ではなく、同じベクトルの内積ですが、内積はスカラーとなるため、方向は無関係になります。しかし、お考えのように、

>エネルギー保存則を考えてみますと、0.5mv^2+hν=一定 が成り立つとすると...続きを読む

Q原子の中の原子核と電子

原子は、原子核と電子から構成されていますね。それらは、プラスとマイナスの電荷を持っていますね。それなのに何故、原子核と電子は衝突してしまわないのでしょう。素粒子の実験では、加速器という装置を使って、素粒子同士をぶつけることができるそうですが、このような衝突が何故、原子の中で起こらないのでしょうか。みなさん、よろしくお願いします。

Aベストアンサー

stomachman さんの言われるように,20世紀初頭の大難問でした.

1911 年にラザフォードが原子核+電子という模型を提出して以来,
1913 年のボーアの量子仮設などを経て,1926 年にシュレーディンガーが
水素原子のシュレーディンガー方程式の解を示したのが最終解決ですね.
3人ともノーベル賞を受けています.
ラザフォード・・・・・・・・1908年,ノーベル化学賞
ボーア・・・・・・・・・・・1922年,ノーベル物理学賞
シュレーディンガー・・・・・1933年,ノーベル物理学賞

○ 前期量子論風に簡単にやってみましょう.
電子が陽子の周囲を半径 a の円軌道で回っているとして
(本当は回っているわけではないが...)
陽子-電子間のクーロン引力が e^2/a^2
(4πε0 がついていないのは cgs 非有理化単位系を使っているから)
遠心力が maω^2 (ωは回転の角速度),
両者が釣り合うから
(1)   e^2/a^2 = maω^2
速度は v = aω で,運動量 p は
(2)   p = mv = maω
stomachman さんの言われる電子波の波長λは,
ド・ブロイ(これも1929年のノーベル物理学賞)の関係式(1924年)で
(3)   λ = h/p
h はプランク定数.
円軌道一周が 2πa の長さですから,これが波長λの整数倍でないと
一周したときに波の頭としっぽがずれてしまう.
(4)   2πa = nλ  (n は自然数)
で,(1)~(4)から,簡単に
(5)   a_n = n^2 h^2 / 4π^2 m e^2
で,円軌道の半径が h^2 / 4π^2 m e^2 の n^2 倍しかとれない,
というようになっているのがわかります.
n = 0 では電子波がなくなっちゃいます.
エネルギー E_n は,運動エネルギー mv^2 = ma^2 ω^2 と,
クーロン力のポテンシャルエネルギー -e^2/a (負号は引力だから)の和で,
(6)   E_n = - 2π^2 e^4 m / n^2 h^2
で,これも離散的な値を取ります.
stomachman さんの E = mc^2 は何か誤解されているようですね.
エネルギーが E_n で量子化されていますから,
状態間を移るためにはそのエネルギー差の出し入れが必要なです.
それが電磁波のエネルギー hν になっているので,
吸収や放出する電磁波の波長は特定のものしかあり得ません.
ここらへんは stomachman さんの言われるとおり.

○ 上の前期量子論風の話は,きちんとした量子力学の定式化の話からすると
まずいところがあれこれあります.

○ ド・ブロイの波長の話は大分後の話で,前期量子論では作用積分の量子化
という議論になっていました.

○ もうちょっと簡単に言うなら,
電子が陽子の場所に落ち込んで動かなくなってしまうと,
場所が決まり運動量も決まってしまうので,
ハイゼンベルクの不確定性原理に違反する,という言い方も出来ます.

○ エネルギーが離散的な値を取るのは束縛状態(E < 0)だけで,
非束縛状態(散乱状態)の E > 0 では,エネルギーが連続的な値をとります.
量子力学では何でもエネルギーが離散的というわけではありません.
よく誤解されるようですが,量子力学という名前が悪いのかな?
加速器で陽子を原子核に打ち込むような話では,
陽子のエネルギーは連続的に取り得ます.

○ 加速器でよく使われるのは,
陽子や重陽子(重水素の原子核,陽子1個+中性子1個)や
α粒子(ヘリウム4の原子核,陽子2個+中性子2個)を
標的の原子核に打ち込むというものです.
標的がうまく取り込んでくれれば,原子番号が1か2大きい原子核ができます.
超ウラン元素のはじめの方はこのようなやり方で作られました.
後の方の元素はクロムイオンを鉛原子核にぶつけるなど,しています.
陽子も原子核も正電荷を持っていますから,クーロン反発力があります.
十分距離が近づけば核力の引力が作用しますが,そこまでクーロン反発力に逆らって
近づけるために加速器で加速するのです.

stomachman さんの言われるように,20世紀初頭の大難問でした.

1911 年にラザフォードが原子核+電子という模型を提出して以来,
1913 年のボーアの量子仮設などを経て,1926 年にシュレーディンガーが
水素原子のシュレーディンガー方程式の解を示したのが最終解決ですね.
3人ともノーベル賞を受けています.
ラザフォード・・・・・・・・1908年,ノーベル化学賞
ボーア・・・・・・・・・・・1922年,ノーベル物理学賞
シュレーディンガー・・・・・1933年,ノーベル物理学賞

○ 前期量子論風...続きを読む

Q長岡モデルとボーアモデルの違い

長岡さんが仮定した原子モデルと
ボーアさんが仮定した原子モデルって
どこがちがうんですか?

Aベストアンサー

電子の波動性を考慮するかしないかと言うことでしょう。
ボーアは波動性を考えることによって、エネルギーの不連続性に関する説明や、原子の大きさの理論計算にまで発展させたことが重要です。


人気Q&Aランキング