痔になりやすい生活習慣とは?

正孔と電子を比べると、前者のほうが有効質量は重いわけで、
移動度∝緩和時間/有効質量
の式から、通常、正孔のほうが移動度が小さくなります。
緩和時間は不純物やフォノンとの散乱を考えるわけですが、
重い正孔のほうがフォノンと散乱しやすいということはあるのでしょうか?
あるのだとすると、どうしてそうなるのでしょうか?
ご教示、どうぞよろしくお願いいたします。

A 回答 (2件)

私は難しい問題だと思います。


単純に重いホールor軽いホールのどちらかのほうがフォノン散乱を
受けやすいと結論することは出来ないと思います。
しいて言うなら、私は軽いホールの方が散乱確率が増すのではないかと
考えます。(あくまで私が考えた結果で、参考意見です)
間違っているかもしれませんが、議論の助けになれば幸いです。

まず飽和速度が関係するような高電界域ではなくて、
ドリフト速度と印加電界が比例する低電界域を前提にします。(Vdrift=mobility x 電界 が成り立つ領域)
このときフォノン散乱の主因は音響フォノンです。
音響フォノン密度は高エネルギーの方が高密度となります。
つまり高い運動エネルギーを持ったキャリアのほうがフォノン散乱を受けやすいことになります。
軽いホールと重いホールのどちらの方が高い運動エネルギーに達しやすいかを
考えると、軽いホールの方が散乱を受ける前に短時間で高エネルギーに達すると思います。
このため軽いホールの方が音響フォノンを吐き出し緩和する可能性が高いように思えます。
どちらが散乱されやすいかというのは単純に有効質量だけで議論できず、私は複雑だと思います。

この回答への補足

お返事どうもありがとうございました。
ちょっと自分で調べてみたところ、下記のサイトにフォノンと電子の散乱による緩和時間に関する記述が掲載されておりました。
http://books.google.com/books?id=tpc7G3NEfHkC&dq …
(URLがきちんとリンクされない場合は
「熱電変換工学-基礎と応用」坂田亮著をご覧ください)

126ページ52式によると、
緩和速度(緩和時間の逆数)はおおよそ有効質量m*の2乗に比例するとのこと。つまり有効質量が重いものほど緩和速度が速い=緩和時間が短いということがわかります。
しかし厳密に52式を議論するならば、変形ポテンシャルの項も含まれているので単純には行かないと思います。
(現に、キャリア密度が多くなるほど緩和時間が長くなる、というのは直感に反するものであり、これはおそらくキャリア密度の増加に伴う変形ポテンシャルの変化分も考慮しなければならないと思います。)
またこの式はSiやGeといったバンド構造が放物線で近似できるものに限られるようです。

補足日時:2009/01/06 12:49
    • good
    • 0

有効質量が大きいということは物質中で動きにくいと考えられます。


よってホールの方が散乱しやすいというより、有効質量が小さくて動きやすい電子より相対的に散乱の影響が大きくなるという方が正しいのではないのでしょうか。

この回答への補足

御返事どうもありがとうございました。
感覚的には納得がいきますが、どういうメカニズム(ないしは物理的力)で有効質量の大きいものの方が散乱の影響が大きくなるか知りたいのです。

補足日時:2009/01/06 09:25
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q正孔の有効質量とは

半導体の教科書に正孔の有効質量と出てきました
正孔は電子がない状態を表すので質量は0ではないのですか?
わかりません

それと、具体的なその値も教えていただければ
うれしいです

Aベストアンサー

有効質量は、ほんとの質量とは全く別物です。
正孔だけではなくて、電子の有効質量も、電子の本当の質量とは、ほとんど関係ないです。

もし、電子が真空中に1個だけ、あって、そこに電界をかければ、ニュートンの古典力学では、
F=qE = ma (q:電子の電荷、m:電子の質量、a:加速度)
という運動方程式になります。

ところで、半導体では、結晶を考えています。
結晶っていうのは、原子が周期的にたくさん並んでいるものです。
この結晶に電界Eをかけたとすると、結晶中の電子(伝導電子)は、電界Eによる力ももちろん受けますが、それだけではなくて、結晶中の電子は、周期的に並んでいる原子核から力(本当は量子力学を考えているので、「力」という言葉を使うのはかなり語弊があるのですが)からも力を受けています。しかも、結晶ですから、原子核は近いのから遠いのまで大量にあります。
なんで、結晶中の電子の運動は、実際には、上に書いたような簡単な式では表わすことができません。

な、はずなんですが、実は、うまいこと近似をすると、結晶の原子核たちから受けている力をすべて忘れてしまって、その代わりに、電子の質量がmではなくて、m'になったと思ったような式
F = qE = m'a
で、結晶中の伝導電子の動きが(近似的にですが)記述できてしまうということがわかったんです。本当は、結晶中のすべての原子を考えて、さらに量子力学を考えなければ、結晶中の伝導電子の動きは記述できないはずなのに、実は、それが、古典力学の式で、質量の値を有効質量というものに取り替えると、近似的には、電子が真空中に1個あるのと同じように扱えてしまう、ということです。これを、準古典力学表示 と言っています。
この有効質量というのは、電子の質量というよりは、むしろ、結晶を構成する原子や、結晶の構造によって決まっています。

で、正孔の有効質量ですが、これも、質量となってますが、本当の質量とはほとんど関係ないです。正孔は、本当は電子が抜けた穴なわけですが、その電子の抜けた穴がどう動いていくかを量子力学をつかってきちんと記述するかわりに、ある有効質量をもった+電荷を持つ正孔という粒子が真空中に1個あると思って、古典力学の式を立てると、たまたま、うまくいってしまうんです。

ただし、この準古典力学は、あくまで近似なんで、本当は正しくありません。正確に言えば、ポテンシャル関数の極値の周りでしか成り立ちません。なんですが、半導体では、普通、価電子帯の中で一番エネルギーが高い電子(ポテンシャル関数が極大値を取るところ)と、伝導帯の中で一番エネルギーが低い電子(ポテンシャル関数が極小値を取るところ)、にしか興味がないことが多いので、たいていうまく行ってしまいます。

有効質量は、ほんとの質量とは全く別物です。
正孔だけではなくて、電子の有効質量も、電子の本当の質量とは、ほとんど関係ないです。

もし、電子が真空中に1個だけ、あって、そこに電界をかければ、ニュートンの古典力学では、
F=qE = ma (q:電子の電荷、m:電子の質量、a:加速度)
という運動方程式になります。

ところで、半導体では、結晶を考えています。
結晶っていうのは、原子が周期的にたくさん並んでいるものです。
この結晶に電界Eをかけたとすると、結晶中の電子(伝導電子)は、電...続きを読む

Q正孔に質量はあるの?

半導体を卒研テーマに選んでいる者です。各種半導体の特性一覧表を見ていて
気づいたのですが、正孔の有効質量という項目があったのです。しかも、重い
正孔と軽い正孔に分けられていました。
正孔に質量があるっていうことが概念的に理解できないんですが・・・。
正孔って電子の抜け殻(?)ですよね。だから実際には存在しない物のはずなのに
とおもったりしています。

Aベストアンサー

これは、正孔そのものに質量があるのではありません。
あくまでも正孔がもつ、見かけ上の質量です。

正孔=電子の抜穴ですが、たとえば、電圧を印画することで、周囲の電子を移動させ、見かけ上、この正孔を移動させることができます。エネルギーを与えて正孔を動かすわけですが、実際は電子を動かすわけですから、当然のことながら、「正孔の動きにくさ』というものが存在します。これが見かけ上の質量です。

参考URL:http://www.tuat.ac.jp/~katsuaki/z2000-8.html

Q有効質量について教えてください。

「有効質量」は「質量」とどう違うのでしょうか?

また、「有効」の意味は何なのでしょうか?

Aベストアンサー

siegmund です.

半導体では,電子の波動関数がブロッホ関数になっていて,
エネルギーεと波数 k の関係ε(k)が自由粒子の時とは違います.
自由粒子なら
(1)  ε0(k) = (h/2π)^2 k^2 / 2m
です.
h はプランク定数,m は電子の質量.
で,(1)から
(2)  1/m = (2π/h)^2 {d^2 ε0(k) / dk^2}
ですね.
これを半導体中の電子にも適用して
(3)  1/m* = (2π/h)^2 {d^2 ε(k) / dk^2}
で有効質量 m* を定義しています.

もちろん,他のやりかたでもεと m を結びつけることはできるわけですが,
運動方程式など作ってみると,(2)の定義が妥当であることを示すことができます.
詳細は後述の参考書などごご覧下さい.

一般には,半導体のバンドは異方的なので
(4)  (1/m*)μν = (2π/h)^2 {d^2 ε(k) / dkμ dkν}
で有効質量が定義され,テンソル量になっています.
μ,ν = x,y,z です.

特定の電子の速度などが測定できるわけではありませんから,
運動方程式から直接有効質量を測定しようというのは無理です.
半導体中電子の有効質量を測定する手段として有名なのは,
サイクロトロン共鳴,ド・ハース‐ファン・アルフェン効果などが有名です.

有効質量の考え方はバンド構造と共に半導体の基本ですから,
マスターされるようにおすすめします.
今,手元には半導体の専門書が見あたりませんが,
キッテルの「固体物理学入門」にはある程度記述があります.

siegmund です.

半導体では,電子の波動関数がブロッホ関数になっていて,
エネルギーεと波数 k の関係ε(k)が自由粒子の時とは違います.
自由粒子なら
(1)  ε0(k) = (h/2π)^2 k^2 / 2m
です.
h はプランク定数,m は電子の質量.
で,(1)から
(2)  1/m = (2π/h)^2 {d^2 ε0(k) / dk^2}
ですね.
これを半導体中の電子にも適用して
(3)  1/m* = (2π/h)^2 {d^2 ε(k) / dk^2}
で有効質量 m* を定義しています.

もちろん,他のやりかたでもεと m を結びつけることはできるわけですが,
運...続きを読む

QP型半導体のキャリア移動度??

N型のキャリア移動度がどうしてP型半導体のキャリア移動度
よりおおきいのでしょう?
バンドギャップの違いからなのでしょうか?
御教えいただけると幸いです。

Aベストアンサー

こんばんは。
半導体デバイス・プロセスの技術開発業務経験者です。

「N型のキャリア移動度がどうしてP型半導体のキャリア移動度よりおおきいのでしょう?」
というよりは、
「P型のキャリア移動度がどうしてN型半導体のキャリア移動度より小さいのでしょう?」
という話になります。


N型半導体のキャリアは、文字通り電子ですが、
P型半導体のキャリアである「ホール」(正孔)は、おとぎ話の登場人物です。
実際に動くのは、ホールではなく、あくまでも電子です。
したがって、N型半導体とP型半導体を対称に考えることなど、そもそもできないのです。


15パズルって、やったことないですか?
http://weblogjapan.com/img_d/2007/05/23/3.jpg
15個の板を電子、1箇所空いているところをホールだと思ってください。
狙ったところまで「ホール」(空き)を移動させるには、周りの電子(板)を色々と動かさないといけません。
それがP型半導体です。


N型半導体は、15パズルの板と空きを反転させたもの、すなわち、板が1枚だけで、空いたところが15箇所あるパズルです。
狙ったところまで電子を移動させるのは、いとも簡単なことです。

そういうわけで、ホールの移動度は電子の移動度より小さくなっているのです。


以上、ご参考になりましたら。

こんばんは。
半導体デバイス・プロセスの技術開発業務経験者です。

「N型のキャリア移動度がどうしてP型半導体のキャリア移動度よりおおきいのでしょう?」
というよりは、
「P型のキャリア移動度がどうしてN型半導体のキャリア移動度より小さいのでしょう?」
という話になります。


N型半導体のキャリアは、文字通り電子ですが、
P型半導体のキャリアである「ホール」(正孔)は、おとぎ話の登場人物です。
実際に動くのは、ホールではなく、あくまでも電子です。
したがって、N型半導体と...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qキャリアの移動度と温度依存性について

キャリア密度は温度依存性がある理由は分かったのですが、なぜ移動度にも温度依存性があるのか分かりません。

どなたか回答お願いします。

Aベストアンサー

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げられてしまいます。不純物密度が高いほど移動度は小さくなっていきます。しかし、温度が上昇すると、速度の大きいキャリアは、すり抜け、平均速度は大きくなるため、偏向の割合が少なくなるので、移動度は増加していきます。
逆に言えば、キャリア密度が小さいときに、温度が高くなると移動度の減少の割合は大きくなります。

密度と温度の両方が関係してきますので、説明が分かりにくいかもしれません。

最後に中性の不純物によってもキャリアの散乱は受けますが、この場合の移動度は温度にはよらないことが示されています。

散乱機構と移動度の関係式

格子振動∝m*^(-2/5)・T^(-3/2)
イオン化不純物∝m*^(-1/2)T^(3/2)
中性不純物∝m*

m*:有効質量
T:絶対温度

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げら...続きを読む

Qオーミック接触とは?

間の抜けた質問のようで申し訳ないのですが、オーミック接触ってどんな時に重要なのでしょうか?
整流性の無い金属-半導体接触だというのは分かったのですがそれ以上のことを書いてあるサイトが見つけられませんでした。
どうか詳しい方、ご教授下さい。よろしくお願いします。

Aベストアンサー

半導体と金属を接触(接合)させ、ある処理をするとジャンクション特性が出て来ます。つまり、金属から半導体に電流を流す際の特性と半導体から金属に電流を流す際の特性が変わってきます(簡単に考えるとダイオード特性と思ってください)。また、電圧-電流特性が一次式以外の特性(例えば二次特性)となります。

しかし、オーミック接触の場合はこの特性が出ず、オームの法則が成立する特性となります。

どんな時に重要かとの質問ですが、一次式の特性が必要な際に必要です。
例えば、トランジスターやダイオード、IC等のボンディングワイヤーを半導体に取り付ける際にダイオード特性が出たら困りますよね。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qフェルミ準位について教えてください

私の持っている資料にフェルミ準位についてこう書かれていました。

「電子が絶対零度で存在することができる最大エネルギーをフェルミエネルギーと言う」

また教科書には

「フェルミ準位よりも下に位置する準位には電子が存在し、この上にある準位には電子がないようなものと考えて良い」

この考えで、真性半導体についての説明をんで混乱しました。

「価電子帯のすべての準位は電子で満たされている。従って絶対零度における電子の存在確率は価電子帯で1、伝導帯で零となり、存在確率が1/2となる。すなわちフェルミ準位は価電子帯と伝導帯の間に位置することになる。」
以下に教科書の図を示します(手書きで申し訳ありません)

EcとEvの間は禁制帯で電子が存在できないはずなのに、図を見ると、禁制帯の間にフェルミ準位があります。 上の教科書の説明からいくと、EfとEvの間には禁制帯ながら、電子が存在できることになりますが.....これはどういうことでしょうか?

このまま読み進めた結果PN接合のところでさらに混乱してしましました。

長くなってしましましたが、回答宜しくお願いします

私の持っている資料にフェルミ準位についてこう書かれていました。

「電子が絶対零度で存在することができる最大エネルギーをフェルミエネルギーと言う」

また教科書には

「フェルミ準位よりも下に位置する準位には電子が存在し、この上にある準位には電子がないようなものと考えて良い」

この考えで、真性半導体についての説明をんで混乱しました。

「価電子帯のすべての準位は電子で満たされている。従って絶対零度における電子の存在確率は価電子帯で1、伝導帯で零となり、存在確率が1/2となる。すなわち...続きを読む

Aベストアンサー

価電子帯の電子は、エネルギーを受けると伝導帯に遷移することはわかりますね?
また、フェルミ分布関数を考えてみると、フェルミエネルギーの点を原点にすると点対称な関数になっています。

遷移する前とした後の電子の準位の中心は、フェルミエネルギーになっているはずです。
電子がいくつも励起されると、分布関数に従ったエネルギー分布を見せます。
これは価電子帯のホールの分布も同じ形で分布します。
電子の分布をみた場合、価電子帯の上端と、伝導帯の下端の間の中心にフェルミエネルギーがあるような分布をしているということから、フェルミエネルギーはこのような位置になります。(ある種の対称性がある為、中心になります)

ドープ原子がある場合、電子が存在できる準位が禁制帯の中にできてしまう為、電子の存在分布が変わり、フェルミエネルギーが少し上もしくは下に移動することも教科書には書いてあることでしょう。


人気Q&Aランキング