統計学の質問【帰無仮説】
W大学のP学部において、自宅通学者の比率にについて調べたい。
P学部から100人の在籍者を無作為に選んで尋ねたところ、選ばれた学生の80人が自宅通学者であると回答した。これについて以下の問いに答えなさい。
選択肢の中からもっとも適切なものをひとつ選ぶこと。
P学部の全在籍者の自宅通学者の比率が0.85であるという帰無仮説を、0.85ではないという対立仮説に対して有意水準0.05で両側検定し、その結果を選択肢から選びなさい。
ヒント:母集団比率に関する検定の場合、分散は標本比率から推定できます(講義内容を確認してください)。母平均に関する検定の場合、データの全部ないし標本分散の値が問題文に記されています。
①帰無仮説は棄却される。
②帰無仮説は棄却されない。
③帰無仮説を棄却することも、しないこともできない。
答えは何ですか。
理由も教えてください。
私は②棄却されない だと考えました。
No.4ベストアンサー
- 回答日時:
No.6
- 回答日時:
No.4 にも記載したとおり、帰無仮説のもとでは標本平均 Xbarは N(60, 2) に従います。
従って、
P((Xbar - 60)/√2 > 1.645) = 0.05
⇔
P(Xbar > 60 + 1.645√2) = 0.05
より
60 + 1.645√2 = (K - 256)/(-4)
∴ K = -4×(60 + 1.645√2) + 256 ≒ 6.694
(対数尤度比の閾値は K と表記しました)
Xbar = 64 での対数尤度比は0なので、K以下。
よって、帰無仮説は棄却されます。
ついでに記載すると、この質問での問題文には
> ヒント:母集団比率に関する検定の場合、分散は標本比率から推定できます(講義内容を確認してください)。
と記載されていますが、帰無仮説のもとでは、母比率が0.85であることがわかっているので、棄却限界は
0.85 ± 1.96√{0.85×(1 - 0.85)/100}
で計算すべきです。
これは、0.78, 0.92であり、標本比率0.80はこれらの数値の区間内にあるので、帰無仮説は棄却されません。
No.5
- 回答日時:
前問の件、
gas2021さんのご指摘は、尤度比検定(対立仮説が等号で与えられたケース)に沿ったものか不明ですが、
私、まだどこかで計算間違いしていますかね。
検算をして、確認して下さいませ。
式の導出結果は、松嶋先生の本と照らして、間違いは無かったですが、代入計算でミスしているかも。
ただ、標本はちょうど両仮説の中点にあるので、棄却されないとしても、大きな過誤が生じるとは思えません。こんなどっちつかずのケースは棄却しないというのが、ネイマンピアソン流だと思います。
もし、間違っていたら、本当にすみません。
No.3
- 回答日時:
前問の件
>答えは「棄却されない」になるということでしょうか?
はい。観測値の対数尤度比0は、検定の閾値ー9.28より大きいですので、帰無仮説は棄却されません。
No.2
- 回答日時:
本問は、自宅通学者か、そうでないか、の二項分布と考えれば、
二項分布の平均はnp、分散はnp(1-p)ですので、
これを用いて正規分布近似をするのが一般的です。
ただし、注意点は、二項分布のpは0~1までの範囲しか取りませんが、正規分布はその外側まですそ野を引く分布です。ですから、5%以下とか95%以上の箇所では乖離が大きく使い物にならないのです。
そのため、製造現場の不良率などは、ロジット変換や逆正弦変換を行います。QC検定に出題されるくらいです。
実は二項検定は、Rでやると、10種類近くの近似方法の結果が表示されます。
さて、本ケースは、通常の正規分布近似で良いので、
分散16の正規分布で近似し、その95%信頼限界を求めます。
H0;p=0.85
H1;p≠0.85(両側検定)
α=0.05
観測値が信頼区間の範囲内であれば、帰無仮説が保留され、範囲外であれば棄却されます。
信頼限界は、85±1.96×√16=77.16,92.84
現在の観測値80はこの範囲内であるので、帰無仮説は棄却されません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
サンプル数の異なる2群間にお...
-
エクセルのグラフから半値幅を...
-
検量線の決定係数について
-
理科のグラフで、直線と曲線の...
-
最小二乗法を反比例の式を元に...
-
極値をもつ時と持たない時、単...
-
統計について
-
卒業論文のアンケートの数について
-
EXCELにてローパスフィルタを作...
-
心理学の統計について
-
一次関数 グラフや式それぞれ...
-
【統計】有意に「高い」?「低...
-
アンケートの集計分析の基礎(...
-
統計 RSD%について教えて下さい。
-
心理機能診断をしたのですが、...
-
標準偏差・標準誤差・有意差に...
-
統計でどれくらいサンプルがあ...
-
反比例の領域
-
統計的に不適切回答が含まれて...
-
パイロットサンプルって何ですか?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
サンプル数の異なる2群間にお...
-
EXCELにてローパスフィルタを作...
-
検量線の決定係数について
-
エクセルのグラフから半値幅を...
-
下の対数表示のグラフから低域...
-
心理学の統計について
-
一次関数 グラフや式それぞれ...
-
統計について
-
【統計】有意に「高い」?「低...
-
理科のグラフで、直線と曲線の...
-
エクセルの統計でχ二乗検定の結...
-
卒業論文のアンケートの数について
-
x=2分の3のグラフはどのように...
-
線形なグラフとはひとくちに言...
-
最小二乗法を反比例の式を元に...
-
極値をもつ時と持たない時、単...
-
統計学のサンプル数2000の根拠は?
-
一元配置分散分析のp値が0になる
-
検定統計量の値がマイナス
-
パイロットサンプルって何ですか?
おすすめ情報