ある教育系動画で数学の試験問題の解説を視聴していた時、問題を解いていく過程で、1/tanxをπ/4からπ/2まで積分する式が導出されました。このとき、解説者は、tanxがπ/2では定義されないことが不安ならば、一旦、1/tanxをcosx/sinxに置き換えて書き、計算を進めれば安心だという意味の説明をしていました。
その時はなるほどと思ったのですが、後になって、1/tanxもcosx/sinxも同じことを表しているのだから、そこまで気にする必要があるのかな?と疑問に感じました。
確かに、奇妙と言えるかもしれませんが、1/tanxよりもcosx/sinxと書き換えておいた方が安心できる気もするのですが…。
やはり、解答するときは、一応、書き換えておいた方が無難でしょうか?
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
1/tan x を cos x/sin x に置き換えたのは、
π/2 で定義されないことが心配だったからじゃなくて
t = sin x で置換積分するためじゃないのかなあ?
1/tan x = 1/(sin x/cos x) = cos x/sin x と変形できるのは
cos x ≠ 0 の場合だけなので、
その書き換えでは、話を誤魔化してるだけでしょう。
本当に心配なら、
π/4 から θ まで(ただし θ < π/2) で積分してから
θ → (π/2)-0 の極限をとればいいです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学3の、定積分に関する質問です。 ∫上端e^2下端1{dx}/{x}という問題で、[log|x|] 1 2022/06/16 12:00
- 数学 1/tanxの積分について 2 2023/12/09 17:28
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 【数学ⅲ】三角関数と合成関数の微分について 4 2022/07/07 21:44
- 数学 数学3の微分法・対数関数の導関数に関しての質問です。 [ ] は絶対値を表しています。 y=log[ 3 2022/05/24 14:07
- 数学 ∫1/sinxdxの不定積分で 分母・分子にsinxをかけると ∫sinx/sin^2xdx =∫s 3 2023/09/24 23:03
- 数学 三角関数の微分 添付の問題ですが、sinxを微分するとcosxになるので、3(cosx)^2になると 2 2023/01/20 15:50
- 数学 t=tan(x/2)の置換積分について質問です。写真の問題では、(1)でt=tan(x/2)として、 6 2022/11/21 22:59
- 数学 三角関数の問題なのですが、 0≦θ<2π のとき次の不等式を解け。 (1)sinx≧√3cosx ( 4 2023/05/18 00:15
- 数学 高校数学の問題です。教えてください。 次の連立方程式を解け。 ただし、0<=x<=2π、0<=y<= 4 2022/08/31 18:33
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
これ何て呼びますか Part2
あなたのお住いの地域で、これ、何て呼びますか?
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
【お題】 ・このサンタクロースは偽物だと気付いた理由とは?
-
これの(2)なんですがcosx/sinxになって1/tanθにしたらだめって言われました。どうしてで
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
cosπ/2やcos0ってどのように求...
-
sinθ・cosθの積分に付いて
-
1 / (x^2+1)^(3/2)の積分について
-
∫_{0}^{π/4}dx/{sin²x+3cos²x}...
-
極座標A(2,π/6)となる点を通り...
-
位相がよく分かりません。 cos(...
-
扇形の図形に長方形が内接
-
複素数α=cos2π/7+isin2π/7にお...
-
重積分について
-
極座標と極方程式について教え...
-
1/(sinx+cosx)の積分
-
積分∫[0→1]√(1-x^2)dx=π/4
-
五芒星の角(?)の座標
-
複素数のn乗根が解けません
-
数3の極限について教えてくださ...
-
下手したら東大京大レベルの問...
-
数学の問題です。 写真の積分を...
-
y=sin4θとy=cos4θのグラフの...
-
助けて
-
重積分の質問です
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1 / (x^2+1)^(3/2)の積分について
-
cosπ/2やcos0ってどのように求...
-
数IIIの問題です
-
位相がよく分かりません。 cos(...
-
y=sin4θとy=cos4θのグラフの...
-
cos π/8 の求め方
-
この1/2はどこからでてきました...
-
複素数のn乗根が解けません
-
数3の極限について教えてくださ...
-
1/5+4cosxの0→2πまでの積分で、...
-
1/(sinx+cosx)の積分
-
積分∫[0→1]√(1-x^2)dx=π/4
-
cos(10π/3)は計算可能ですか?
-
関数
-
扇形の図形に長方形が内接
-
なぜ3/4πがでてくるのか 分かり...
-
arccos0の値ってなぜπ/2なんで...
-
画像はy=-3cos2θ のグラフなの...
-
数学Ⅱ 三角関数のグラフ y=-2co...
-
五芒星の角(?)の座標
おすすめ情報