
No.8ベストアンサー
- 回答日時:
2m(2n+1)=2n+1 となるような整数mが存在すると仮定すると
↓両辺を2(2n+1)で割ると
m=1/2
となってmが整数であることに矛盾するから
2m(2n+1)=2n+1 となるような整数mが存在しない
だから
2m(2n+1)はすべての正整数を表わすことはできません
一方
m=0とすると
2^m(2n+1)=2^0(2n+1)=2n+1
となるから
2^m(2n+1)=2n+1 となるような整数m=0が存在するのです

No.6
- 回答日時:
x が 2 で何回割り切れるのかに注目して、
割り切れる回数を m 回と置いているのです。
割った商は奇数になるので、2n+1 と置けます。
なんで m に注目するかというと...
方程式 3^x - 1 = (2^x)y から未知数の個数を減らすために
3^x ≡ 1 (mod 2^x) と解釈してみます。
mod の法にも x が入ってるのは途方もない話ですが、
オイラーの定理(フェルマーの小定理に似たやつ)
が関係してそうだな? という感触は得られます。 すると、
x (mod φ(2^x)), φ(2^x) = (2^x)(1 - 1/2) = 2^(x-1)
の値を考えて、ということになる。 そのためには
x の素因数分解に 2 が何個入っているか?は
重要な役割を持ちそうです。
で、 m を考えると、写真のような答案が作れた
というわけです。
No.5
- 回答日時:
すべての正の整数xは x=2^m*(2n+1) (m,nは0以上の整数)と「一意的に」書くことができます(mはxが2で割り切れる回数)。
x=2m(2n+1)と表すこともできますが、m,nは一意的には決まりません(30=2^1*15 , 30=10*3=6*5)。その解答では、こうおくと、3^x-1 に、2という素因子がどのくらい含まれるか(何回2で割り切れるか)が評価できる、といっています。
No.4
- 回答日時:
(3^x)-1=(2^x)y
を満たす正整数x,yの組を求めるために
x=2^m(2n+1)
とおいたのです
(3^x)-1=(2^x)y
x=1のとき
(3^x)-1=3^1-1=2=2*1=(2^1)y
y=1
x=2のとき
(3^x)-1=3^2-1=8=4*2=(2^2)y
y=2
x=4のとき
(3^x)-1=3^4-1=80=16*5=(2^4)y
y=5
x≧3
xが奇数と仮定すると
x=2n+1 となる整数nがある
3^x=3^(2n+1)=3(9^n)=3(4*2+1)^n=3(mod4)
だから
3^x=4k+3 となる整数kがある
(3^x)-1=4k+2=2(2k+1)=(2^x)y
だから
x=1となってx≧3に矛盾するから
x≧3は偶数だから
xが3以上の奇数のときn≧1
x=2^0(2n+1)のとき(3^x)-1=(2^x)yとなる(x,y)は存在しない
ある非負整数mに対して
x=2^m(2n+1)のとき(3^x)-1=(2^x)yとなる(x,y)は存在しないと仮定して
x=2^(m+1)(2n+1)のとき(3^x)-1=(2^x)yとなる(x,y)は存在しない
ことを
証明すれば
すべての非負整数mに対して
x=2^(m+1)(2n+1)のとき(3^x)-1=(2^x)yとなる(x,y)は存在しない
ことを
証明することができる
から
x=2^(m+1)(2n+1)
とおいたのです
No.3
- 回答日時:
No.1&2 です。
>簡単に理解できる同値な式なのでもとの式書く必要ないと考えました。
ここで質問するということは「分からないから」だと思うので、あなたが勝手に考えたこと自体が間違っているかもしれませんよ。
いずれにせよ、
「非負整数 m, n を用いて x = 2^m・(2n + 1)」
ということは、
m=0 のとき「奇数」
n = 0 のとき「偶数」
m ≠ 0, n ≠ 0 のとき「偶数と奇数の積」
ということで、すべての正整数を表わしていると思いますが?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
f(x)=f(x²)はどんなグラフになりますか?
数学
-
この問題、解き方は理解したのですが、なんか何がしたいのかよく分かりません。解き方は良いので解法を要約
数学
-
√1って|1|もしくは±1ですよね?
数学
-
-
4
高校の微分の問題で、g(x)=x^3-3bx+3b^2のグラフはなぜ画像のようになるのですか? h(
数学
-
5
t=14+7s/2 s = -4a-4/3a+2 のときtを求めよ この計算問題で答えが t = 7
数学
-
6
絶対値の中が0以上ならそのまま外すと教えられたのですが、この解答では0は-をつけて外しています。なぜ
数学
-
7
123を使って出来る最大の数は?
数学
-
8
logの不等式
数学
-
9
大学数学 質問です 上限、下限の定義で疑問に思う点があります。 上限についてお話しします。 多くの上
数学
-
10
この写真の問題の解説を見た時に、 ◻︎に入る数をa(0≦a≦9)とする。と記載されていたの ですがな
数学
-
11
問2なのですが、黄色い線から青い線になる計算がどうやってやったのか分かりません(´;ω;`)解説お願
数学
-
12
数学1の質問です。 三角形ABCにおいて、 sin A : sin B : sin C =13 :
数学
-
13
仮定より、∠BED=∠CFD=90° したがって、円周角の逆の定理より、4点B,C,F,Eは同一円周
数学
-
14
【問題】 f(x) = x^2 - 4a x + a + 1/4 とする。 0 < x < 1 にお
数学
-
15
写真の赤線部について、こっち側の極限はマイナス側から0に近づけるのでε→-0になると思ったのですが、
数学
-
16
サイコロの確率の問題です! サイコロを同時に5つ振って、ゾロ目になる確率と、数字が階段(1・2・3・
数学
-
17
lim(x→0)sin2x/x=2でいいですよね?
数学
-
18
答えは分かるのですが解き方が分かりません!高校数学
数学
-
19
3分の-6+-√3ってもっと簡単に出来ましたっけ? 私なら、-2+-√3になったのですが!
数学
-
20
数学
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
線形代数で正方行列の性質について
-
行列の計算で
-
ノルム空間でノルムが連続であ...
-
(x^2 -y)y'=xy-1
-
正規分布は一見、円と何も関係...
-
Quantam Mechanicsとは
-
純正ロイヤルストレートフラッ...
-
2次関数
-
(0,1)=[0,1]?
-
至急 a²b+a-b-1 の因数分解...
-
この問題、解き方は理解したの...
-
数学の思考プロセスを理解する...
-
数学I Aの問題
-
数ⅱ等式の証明について。 条件...
-
lecture noteがある場合の板書...
-
【問題】 2次関数 f(x)=x^2−2ax...
-
式の展開
-
コピーしたい本のページ数
-
ルービックキューブと群論
-
数学の問題点を尋ねることがで...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急 a²b+a-b-1 の因数分解...
-
limn→∞、10∧n=0?
-
コピーしたい本のページ数
-
ルービックキューブと群論
-
この問題、解き方は理解したの...
-
三角形の面積は、底辺✕高さ÷2 ...
-
高校数学について
-
上が✖で下が〇になる理由が、何...
-
3つの無理数a,b,cでf(x)=x^3+ax...
-
文字置き 必要条件・十分条件に...
-
(0,1)=[0,1]?
-
数学の問題点を尋ねることがで...
-
写真は2変数関数の合成微分の公...
-
【問題】 f(x) = x^2 - 4a x + ...
-
1/(s(s^2+2s+5))を部分分数分解...
-
https://youtube.com/shorts/Kw...
-
青の吹き出しの何をどう考えれ...
-
数学の質問:関数の書き方
-
数ⅱ等式の証明について。 条件...
-
ランダウの記号のとある演算
おすすめ情報