5x^2+12y^2+z^2+12xy+6yz+4zx=2
で表される図形に外接し、z軸を軸とする円筒の半径を求めよ。
という問題がわかりません。
この方程式の表している図形もわからないほど重傷です。
解答も知りたいですが、この図形も知りたいです。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

No.2について


> ∂r/∂z = 0
> ∂r/∂t = 0
> はなぜ成り立つのでしょうか?

 曲線y=x^2 と直線y=0の接点ではdy/dx=0が成り立っている。

という事情をもしご理解なさっているのなら、以下の説明でおかわり戴けるかと思います。

∂r/∂z = 0 :接点からz軸と平行に微少量dzだけ動いても、rは変化しない。
  接点を含みz軸と平行な平面で切った断面で見ています。
  断面では円筒はz軸に平行な直線、楕円体は楕円になっていて、接点で接している。横軸にz、縦軸にrを取ったグラフを考えればお分かりになるでしょう。

∂r/∂t = 0 :接点から角度tを微少量dtだけ動かしても、rは変化しない。
  今度は、接点を含みz軸と垂直な平面で切った断面で見ています。断面では円筒は原点を中心とする円、楕円体は楕円です。
 さらにそれを極座標で表している。そこで横軸t 縦軸r の直交座標系でグラフを描いてみると、原点を中心とする円というのはr=一定(tによらない訳)ですからt軸と平行な直線、楕円の方はなんかへんてこな曲線になり、接点で接している。


なお、ご質問の図形をExcelなどで描いてみることをお勧めします。
zを固定して、xとyの式だと思って、yについて解き、xを変えてyを計算させる。その表をグラフに描かせます。
zの値を変えるとグラフも変化する。これを眺めればどんな形だか見当がつくでしょう。
    • good
    • 0
この回答へのお礼

なるほど、よくわかりました。ありがとうございます。

お礼日時:2001/10/06 12:44

与えられた方程式で、x,yを定数と考えて、zの2次方程式と


見なすことができます。
これが実数解をもつための条件:判別式>=0を
書くと -x^2-3y^2+2 >=0
となって、これがxy平面にできた”影”の範囲です。
これは楕円の内部で、
半径√2の円柱が外接する円柱です。

3変数の2次の同次式がどのような立体になるかは、xyとかyzとかの
項があるときには、パット見てわかる方法はありません。
対称行列の対角化とか固有値とか勉強して下さい。
線形代数の本の最後のあたりに分類と図がのっている筈です。
    • good
    • 0
この回答へのお礼

xy平面に図形を正射影するんですね。
この解答はとてもわかりやすいです。
2次形式についてもう少し勉強します。
ありがとうございました。

お礼日時:2001/10/06 12:46

●式を見れば…


x^2, y^2, z^2の項の係数および定数項が正であるということは、この図形が楕円体であり、
x,y,zの項がないのは、楕円体の中心が原点(0,0,0)にあるということです。
だから対称性の高い答が出るだろうことが分かりますね。

●どうやって円筒を見つけるか
準備として図形の方程式を
f=0
f=5x^2+12y^2+z^2+12xy+6yz+4zx-2
と書くことにします。fを円筒座標(r,t,z) ここに
  x=r cos(t)
  y=r sin(t)
で表すと
f=5(r cos(t))^2+12(r sin(t))^2+z^2+12(r^2)cos(t)sin(t)+6rz sin(t)+4rz cos(t)-2
ということになります。

さて、円筒と楕円体の接点では
∂r/∂z = 0
∂r/∂t = 0
が成り立っている筈です。

そこで、∂f/∂z を計算してみると
∂f/∂z=4rcos(t)+6rsin(t)+2(2zcos(t)+3zsin(t)+(5(cos(t))^2+12(sin(t))^2+12cos(t)sin(t))r)(∂r/∂z)+2z
これに∂r/∂z = 0を代入すると
∂f/∂z=4rcos(t)+6rsin(t)+2z
さて、f=0より∂f/∂z=0ですから、

円筒と楕円体の接点では
z =-r(2cos(t)+3sin(t)) …(1)
である。

同様に∂f/∂tを計算して、∂r/∂t = 0を代入すると
∂f/∂t=12(r^2)(cos(t))^2+6rzcos(t)-12(r^2)(sin(t))^2-4rzsin(t)+14(r^2)cos(t)sin(t)
を得ます。
∂f/∂t=0, 及び(1)を代入すると
4(r^2)cos(t)sin(t)=0 …(2)
である。
つまり、円筒と楕円体の接点ではr=0かcos(t)=0かsin(t)=0が成り立っている訳です。
r=0ってことはないから、円筒と楕円体は
t=0, π/2, π, 3π/2
の4点で接していることが分かります。これをf=0に代入すれば、
 t=0の時…z=-2r, r^2=2
 t=π/2の時…z=-3r, r^2=2/3
 t=πの時…z=2r, r^2=2
 t=3π/2の時…z=3r, r^2=2/3
となります。
従って、この楕円体に接する円筒というのはr=√2とr=√(2/3)の二つがある。

●お化けの検討
なんで2つ出てきたのでしょうか。
外接しているやつ(r=√2)は分かりやすいですけれど、もうひとつお化け(r=√(2/3))が出てきてしまった。このお化けの円筒は、楕円体との接点を通りz軸と平行な平面で切ってみると楕円に接する直線であり、z軸と垂直な平面で切ってみると楕円と変な風に接している、そういう円筒です。

試しにt=π/2(つまりx=0)をf=0に代入してみます(つまりx=0の平面で切ってみる)と、お化けの円筒の断面は2本の直線y=±√(2/3)です。楕円体の断面は楕円になるわけで、その方程式は
12y^2+z^2+6yz-2=0
です。これはz=±√6において|y|が最大(y=±√(2/3))になる楕円です。グラフを描くと良くわかります。
実際、これをzの2次方程式とみなしたとき、実解があるための条件、つまり判別式は
9y^2-(12y^2-2) ≧ 0 …(3)
そして
9y^2-(12y^2-2)=0
の解は
y=±√(2/3)
であり、(3)が成り立つのは-√(2/3)≦y≦√(2/3)のときですね。この楕円は原点(0,0)から高々√(2/3)しか離れない。そして、2本の直線y=±√(2/3)はこの楕円に接しています。

今度はz=-√6をf=0に代入してみますと、お化けの円筒の断面は半径r=√(2/3)の円、楕円体の断面は楕円で、
5x^2+12y^2+12xy-(6√6)y-(4√6)x+4=0
です。この楕円は半径r=√(2/3)の円とx=0において接していて、あと2箇所で交差しています。

これは是非グラフを描いて検討してみることをお勧めします。
    • good
    • 0
この回答へのお礼

丁寧な回答ありがとうございます。
rの吟味は大変よくわかりました。
しかし、1点だけどうしてもわかりません。
∂r/∂z = 0
∂r/∂t = 0
はなぜ成り立つのでしょうか?
私にとっては明らかではないのでぜひ解説をお願いします。

お礼日時:2001/10/03 12:48

まだ誰も回答していないので、わかった所だけ書きます。


質問の一つである図形の形を教えてくれということですが、これは簡単でした。
私は凡庸な予備校講師では導き出さない公式を使って解きました。この式自体は簡単なのですが、導くのにちょとした労力を要するので、明日元気なときに書きます。公式だけを教えるのは、私の主義に反しますから。

<解>
まずz=k(k∈図形の存在領域のz方向)で固定して(問題の図形をz=kの平面で切る)、その断面がどのようなシェイプか調べる。
調べた結果、切り口はkに関係なく「楕円」であることがわかった。

また同様にx、yで固定したときも、「楕円」になった。
よって、どの方向から見ても楕円なので、図形は楕円球(ラグビーボール)である。

まだ試していませんが、ひょっとすると、円柱座標を使うと円筒の半径を求められるかもしれません。
理由は円筒だからです。(ちなみにここは笑うところです。笑ってますか?)

あるいはzの存在条件から考えるとか。まあいろいろ試せますね。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
私も図形をいろいろな面で切って考えてみました。
確かにどこでも楕円になりました。
でも、具体的にどんな楕円体か(中心の座標や、長径の方向、長さなど)わかりません。
そこまで調べる必要がないかもしれませんが、イメージをつかめないと問題が解けそうにありません。

しかし、図形を知る手がかりを教えてもらったのでよかったです。
ありがとうございました。

お礼日時:2001/10/02 15:45

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q2次曲面 x^2 + 3y^2 +3z^2 -2yz +2y +2z

2次曲面 x^2 + 3y^2 +3z^2 -2yz +2y +2z =0の標準形を求めたいのですが、
今まで、他の問題で使っていた方法が上手く使えなくて困っています。
どうやってとくのか、具体的に教えていただけると助かります。

Aベストアンサー

2次曲面の式において、xにかかわる項目はx^2だけで
xy,xz,xの項がないので、3y^2+3z^2-2yz+2y+2z=-x^2
について、-x^2を定数と見、(y,z)にかかる2次曲線と
して考えてよいことになります。

するとNO1様回答にあるような方法により、平行移動&回転
によって、2次曲線の標準形に変換することができます。
今回のケースでは、y軸方向・z軸方向とも+1/2平行移動し、
しかる後に原点を中心に45度回転させると、
2y^2+4z^2-1=-x^2
すなわち、楕円面に分類される標準形が得られます。

(2次曲線の変換方法の参考URL)
http://www004.upp.so-net.ne.jp/s_honma/figure/surface.htm

(2次曲面の分類の参考URL)
http://ja.wikipedia.org/wiki/%E4%BA%8C%E6%AC%A1%E6%9B%B2%E9%9D%A2
http://ir.iwate-u.ac.jp/dspace/bitstream/10140/881/1/erar-v16n2p1-8.pdf

2次曲面の式において、xにかかわる項目はx^2だけで
xy,xz,xの項がないので、3y^2+3z^2-2yz+2y+2z=-x^2
について、-x^2を定数と見、(y,z)にかかる2次曲線と
して考えてよいことになります。

するとNO1様回答にあるような方法により、平行移動&回転
によって、2次曲線の標準形に変換することができます。
今回のケースでは、y軸方向・z軸方向とも+1/2平行移動し、
しかる後に原点を中心に45度回転させると、
2y^2+4z^2-1=-x^2
すなわち、楕円面に分類される標準形が得られます。

(2次曲線の変換方法の参考URL)
...続きを読む

Qx,y,z>0 実数で、x^3+xy^2+yz^2>=kxyz が成り

x,y,z>0 実数で、x^3+xy^2+yz^2>=kxyz が成り立つとき
kの値の取り得る範囲を求めよ。

つぎのように考えましたが、添削をお願いします。
両辺をxyzで割ると
(x/y)*(x/z)+y/z+z/x>=k ...(1)
y/x=s,z/y=t,x/z=rとおくと
str=1, (1)は、1/(s^2*t)+1/t+st>=k
左辺=aと置いて、分母をはらい、tについての方程式とみると
s^3*t^2-a*s^2*t+1+s^2=0
これが、実数解をもつから、軸>0より
判別式>=0を計算すると
a^2>=4(1+s^2)/s これより、
a^2>=6,よって、√6<=a
よろしくお願いします。

Aベストアンサー

軸>0 という条件が、t>0 であるという解の分離に効いている
ことを示すためには、とても舌足らずで問題もあるけれど、
質問文の書き方がまだしも better かと思います。
No.3 のように書いてしまうと、解がある⇔判別式と短絡した
ように受け取られてしまう可能性があるし、
軸>0 の使い道が、k^2≧8 から k≧2√2 を計算するため
だったと誤解される可能性も大きい。
それでは、二次方程式が t>0 の範囲に解を持つという条件を
正しく処理したことになりません。
解ってはいるんだろうけれど、論理の進め方が見えるように
書かないと。

(1),(2) から k≧2√2 と進めた…という指摘については、
質問文の解法では、(1)∧(2) ⇒ k≧2√2 としているのではなく、
(∀s,(1))∧(2) ⇔ k≧2√2 としているのだという
論理の流れが見えていれば、いやな気分にならずに済みます。
その為には、(2) の等号を成立させる s が存在すること
が重要なので、No.2 の末行にある通りですね。

相加相乗平均の使用については、使うと労力が省けますが、
それが本質的な部分ではありません。
a^2 ≧ 4(1+s^2)/s を満たす s が在るように a の範囲を決める
という本筋が見えていれば、4(1+s^2)/s の値域を求めればよい
ことが解るはずです。
そのためには、d(a^2)/ds を計算して増減表を書くのも一法です。

軸>0 という条件が、t>0 であるという解の分離に効いている
ことを示すためには、とても舌足らずで問題もあるけれど、
質問文の書き方がまだしも better かと思います。
No.3 のように書いてしまうと、解がある⇔判別式と短絡した
ように受け取られてしまう可能性があるし、
軸>0 の使い道が、k^2≧8 から k≧2√2 を計算するため
だったと誤解される可能性も大きい。
それでは、二次方程式が t>0 の範囲に解を持つという条件を
正しく処理したことになりません。
解ってはいるんだろうけれど、論理の進め方が見えるよ...続きを読む

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Qx+y+z=3 x^2+y^2+z^2=9のとき、4xyの最大値 最

x+y+z=3 x^2+y^2+z^2=9のとき、4xyの最大値 最小値はいくらになりますか x、y、zは実数

Aベストアンサー

言いたくはないけど、何でもかんでも微分と言うのはやめようよ。

いずれにしても、zは不要になる。

x+y=a、xy=bとすると、実数条件から a^2-4b≧0 ‥‥(1)
とすると、条件は a+z=3 x^2+y^2+z^2=(x+y)^2-2xy+z^2=a^2-2b+z^2=9 からzを消すと b=a^2-3a ‥‥(2)
(1)と(2)から、0≦a≦4 ‥‥(3) 4xy=4b=4(a^2-3a)=4(a-3/2)^2-9 これはaの2次関数だから (3)の範囲で考えると -9≦4xy≦16。
但し、最大値と最小値を与えるxとyの値は?

Qx*y=log(e^x+e^y)と定義すると、(x*y)+z=(x+z)*(y+z)

x、y∈Rに対して
x*y=log(e^x+e^y)
と定義すると、
(x*y)+z=(x+z)*(y+z)
が成り立ちます。
分配法則の*と+を逆にしたような感じですが、この*から何かしらの代数的な事実が従うのでしょうか?
この*の意味は何なのでしょうか?

x*x=aのとき、x=√aと定めと、
√(a*b)≧(a+b)/2
といった相加相乗平均の関係の類似は成り立つようですが。

Aベストアンサー

e^x=X, e^y=Y, e^z=Z と置いて考えましょう。
e^(x*y)=e^x+e^y → Z=X+Y
e^(x+y)=e^x*e^y → Z=X*Y
つまり、正の数の加算と乗算になります。

>分配法則の*と+を逆にしたような感じですが

まさにその通りです。入れ替えて見てください。

>√(a*b)≧(a+b)/2

通常の相加相乗平均とは逆ですね。


人気Q&Aランキング

おすすめ情報