マルシェル新規登録で5000円分当たる

学校で今微積分を習っているのですが、たびたび出てくるdxだのdtだのというこの記号の意味が分かりません。
数IIの時は∫などと同じようにただ微積分するんだよという意味で書いてあるかと思ったのですが、IIIになってから結構普通に掛け算やら割り算やらしているので、実は数字と同じような扱いもできるということがわかったのですが、そうしたらなんなのかよくわからなくなってしまいました。教科書にも書いてありませんでしたので、こういう場合いろいろ難しいことが多くあえて省略しているのだということはeのときでも分かっていますができれば教えてください。

このQ&Aに関連する最新のQ&A

dt 意味」に関するQ&A: d^2r/dt^2の意味

意味 DS」に関するQ&A: ニンテンドーDSのDSの意味って?

18kgp」に関するQ&A: 18KGPって何?

A 回答 (7件)

例えば、xは「これまで働いてきた時間」yは「これまでに得た収入」とします。


この人が1秒働いて2円の給料をもらったとき、dx=1秒、dy=2円のように書きます。
しかし、10年働いて5千万円もらったときは、Δx=10年、Δy=5千万円のように書いて d と区別します。
dを使う意味は、この「秒給」は今後一定である保証がない(時々刻々変わるかもしれない)ということです。今後「秒給」が変わらないのであれば、Δでもdでもよく、微分という解析法を使う必要もない、ということになります。
    • good
    • 0

おそらく質問者は、



dy/dxの定義や

区分求積法の

∫[x=0,x=1]f(x)dx
=lim (n→∞)Σ[k=1,k=n]f(xk)・(1/n)

において∫とΣ、f(x)とf(xk)、dxと(1/n)
が対応していることを十分に把握しているのだと思います。

その上で、微分方程式
∫f(x)(dx/dt)dt=∫g(y)(dy/dt)dt
などの解法で
あたかもdtを約分したように機械的に
∫f(x)dx=∫g(y)dy
と変形をして解いていることに対する抵抗感などがあるのだろうと思います。

この場合、合成関数の微分
dy/dt=dy/dx・dx/dt
を確認し
これを使っているのだという根拠もしっかり確認しておくほうが良いと思います。
それさえ一度確認すれば
後は機械的に使っても抵抗はないでしょう。
確認なしに「そういう風にできる」といって使うのはNG

逆に言うとdy/dxの表記は、演算のやりやすさを見越した上で考えたものといえます。
    • good
    • 0

高校数学の範囲では dx や dt が単独で現れることはありません。


dy/dx yをxで微分したもの
dy/dt yをtで微分したもの
を意味します。
y' と書くと何で微分したものかわからないことがありますが,このように書けば問題ありません。
∫□dx xで積分したもの
∫□dt tで積分したもの
ですね。

> 結構普通に掛け算やら割り算やらしている

合成関数の微分,逆関数の微分,置換積分
dy/dx=dy/dt dt/dx
dy/dx=1/dx/dt
∫□dx=∫□dx/dt dt
のことですね。
これは,分数の計算をしているわけではありません。
まるで分数の計算のように見える
にすぎません。
言い換えると,まるで分数のように扱える,この記法を考えた人が偉かったということです。
    • good
    • 0

高校までの範囲で微積分を行うのなら、微分はNo.3さんが書いてある通り



limΔy/Δx = dy/dx

で、考えるのが一番わかりやすいと思います。これで
dy/dx=~
という微分の式は、中学の一次関数で習った「グラフの傾き=変化の割合=yの変化量/xの変化量」という式と形が同じなので、x=kという点で見たときに、グラフで接線になることが直感的にわかるのではないでしょうか。


で、積分記号の∫は数列で習ったΣと同じような感覚で考えるのがわかりやすいと思います。つまり、
∫(x→0~x→1)x dx は

(1)xにdxをかける(単なる掛け算です)
(2)x dxで微少面積(dxはほぼ0なので面積と言ってもほとんど線なのですが)が求まるので、それをx→0~x→1の区間において足し合わせる

と考えるとわかりやすいと思います。
    • good
    • 0

yの変化量/xの変化量 =


Δy/Δx
このとき、変化量を十分小さくすることで、微分値になる
limΔy/Δx = dy/dx

こんなかんじだったかと。
日本語で言うと……微小な変化量?
    • good
    • 0

高校数学までのdxというのはあまり深い意味を持たせてありません。


というのもこのあたり厳密になったのは19~20世紀の数学によって、ということなのですが、高校数学までの範囲は集合やベクトル・行列などを除けば18世紀やそれ以前の数学です。
19世紀になって初めてコーシーが微分を厳密に定義し、さらにワイエルシュトラスによってεーδ論法が完成します。その後微分方程式や多変数での全微分などにおいて独立したdxなどの用法も厳密化されますが、20世紀初めにルベーグが測度(measure)を定義して、積分におけるdxというものの正確な意味も厳密化されます。
さらにその後ロビンソンが超準解析を創始し、あらためてライプニッツ以来の無限小も復活します。(厳密に)
で、実はこれら各分野でdxの扱いも微妙に違います。
現代では基本はルベーグ積分・ルベーグ測度で考えるのが普通ですが。
また物理の場合、dxというのはずばりxの微少変化なので、厳密さは失われてます。ここを厳密にすると超準解析になると思います。
このあたり厳密に学びたいのであれば「ルベーグ積分」「測度」「超準解析」「実解析」などをちゃんと学ぶ必要がありますがいずれも大学の数学です。とりあえず
http://www.geocities.co.jp/Technopolis-Mars/7997/
http://www.f-denshi.com/index.html
http://next1.cc.it-hiroshima.ac.jp/MULTIMEDIA/ca …
http://www.amazon.co.jp/gp/richpub/listmania/ful …
辺りを参考に。
    • good
    • 0

多分とても小さな間隔や面積の事を意味しているのだと思います。


例えば∫dxと書いてあると、とても小さなdxという間隔で積分する事を意味し、∫dSと書いてあると、とても小さなdSという面積で積分する事を意味しています。

つまり、数学IIIまでならΔxみたいな物だと思えば大体はあってるはずです。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q微分のdx/dtというような表記の仕方がいまいち良くわかりません

記号の意味そのものは良くわかるのですが…
そのdx/dtに掛けたり割ったりする感覚が良くわかりません。
dy/dt×dt/dx=dy/dxのような?感じです
また、高次導関数をd^ny/dx^nと表記する仕組みも良くわかりません。
なぜ分数で言う分子の位置ではdに指数がついているのに分母の位置にではxに指数が付いているのか…まったくの謎です。
数学が苦手なので基礎的な部分から教えてください

Aベストアンサー

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変化に対するyの変化の割合
 = (y(a+1)-y(a))/(a+1 - a)
 = ((a+1)^2 - a^2)/(a+1 - a)
 = 2a + 1


では、xの変化をさらに1つ減らした場合を考えます。
それは、xをaからaに変化させるということです。
aがいかなる値であっても、y=x^2のグラフには、たしかに傾きがありますが、
傾きというのは、変化の割合と同じです。
ですから、答えがあるはずです。
そこで、上記と同じく、x=a における変化の割合を求めるとすると、どうなるかと言えば、
(y(a)-y(a))/(a-a) = 0/0 (=不定)
という、わけのわからない結果となってしまいます。
しかし、グラフの傾きも、変化の割合も存在するはずです。

そこで、非常に小さい変化量を、dをつけた記号で表すことを考えます。

xの変化は、 a → a+dx
yの変化は、 y(a) → y(a+dx)

xの変化量は、dx ( = a+dx - a)
yの変化量は、dy = y(a+dx) - y(a)
です。


x=aにおける、xの変化に対するyの変化の割合
 =(y(a+dx)-y(a))/(a+dx - a)
 = ((a+dx)^2 - a^2)/(a+dx - a)
 = (2adx + (dx)^2 )/dx
とすることができます。

分子に(dx)^2 がありますが、
dx自体が非常に小さい量ですので、(dx)^2 は、全く無視してよい量となります。
よって、
x=aにおける、xの変化に対するyの変化の割合
 = (2adx + (dx)^2 )/dx
 = 2adx/dx
 = 2a
となります。

これで、x=a のときの dy/dx は、 2a と表せることがわかりました。

ということは、いかなるxの値についても、
dy/dx = 2x
であるということです。

以上のことで、
・x^2 を微分したら 2x になること
・dy/dx は、xの変化に対するyの変化の割合
の意味がおわかりになったと思います。


そして、
たとえば、y、t、x の3変数があって、
ある地点において、
tの変化量のxの変化量に対する割合が4で、
yの変化量のtの変化量に対する割合が3だとしましょう。
すると、xが1変化するのに対してyは12変化します。
dt/dx = 4
dy/dt = 3
dy/dx = 12 = 3 × 4 = dy/dt・dt/dx


なお、
高次導関数の表記については、単なる約束事だと思っておけばよいです。
素直に書けば、
1回微分は、dy/dx
2回微分は、d(dy/dx)/dx
3回微分は、d(d(dy/dx)/dx)/dx
ということになりますが、これでは見にくいので。


以上、ご参考になりましたら幸いです。

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変...続きを読む

Q微積分 dの意味

∫f(x)dxやdx/dtなどとよく使われるdの意味がよくわからなくなってしまいました。例えば∫f(x)dxの場合
は『関数f(x)をxで積分する』で、dx/dtは『x(関数)をtで微分』という意味はわかるのですが、dにはもっと深い意味があるような気がするのです。数学の授業でdx/dtを先生はdxとdtでばらして使ったりしています。本当にそんなことが可能なのでしょうか。先生はdの意味をよく教えてくれないのです。お願いだから誰が教えてください。

Aベストアンサー

微分とは限りなく小さい範囲のものを考えていく関数の為、
とてつもなく小さいxの範囲の場合はΔx(デルタx)、時間tのとてつもなく小さい範囲はΔtと記載します。

それらを関数の中ではデルタの頭文字dを使い、dxやdtと表しているのです。

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

Q積分計算のdtとdxの違いがわかりません。

積分計算のdtとdxの違いがわかりません。
おはようございます。今日もよろしくお願いします。

積分の式を立てて、よく書き忘れてしまい、
前の問題の分も今、dtを書き足していたのですが、
問題集の解答を見てみると、dxになってました。
もしかして、自分がずっと間違えて覚えていたのでしょうか?
それとも、どっちでもいいのでしょうか?
何か決まりがあってdxや、dtに変わるのでしょうか?
教えてください

Aベストアンサー

まぁ、他回答にもありますが、

dtはtについて積分しろ!

dxはxについて積分しろ!

って事だけです。問題を解くときに、何について積分するのか考えて解きましょう。
決まりです。決めてあるだけです。嫌なら、解答の冒頭で「dtを”積分するのはtについてです”と表記する。」としても、本当は正解のはずです。
頭の悪い教師なら×にしますが。

でも、dtの方が楽ですよね。だから、dtという表記が普及したんのです。世界各地で、積分については色んな表記があったと記憶しています。当然日本でも微積分は発明されました。日本では当然、日本語表記です。

でも∫とd(多分definiteの略)だけで、表すのが一番シンプルで分かりやすいからこれが普及したんじゃないですかね。∫の上と下に積分範囲を書くという直感的に分かりやすい記法ですし。

ほんとは、数学なんて解ければいいんですよ。でも、今使われている数学の表記は長年の歴史で洗練されているから使いやすいのはお墨付きって事です。後、自己流の表記を導入すると論文書くときにいちいちその表記の定義を説明しなくちゃならなくて、読む方も読みづらいと思う。下手するとそこで落とされるんじゃんじゃないですかね。数学の論文は書いたことないから分からないけど。

これからも、色んな疑問を投げかけて数学を好きになってください。

まぁ、他回答にもありますが、

dtはtについて積分しろ!

dxはxについて積分しろ!

って事だけです。問題を解くときに、何について積分するのか考えて解きましょう。
決まりです。決めてあるだけです。嫌なら、解答の冒頭で「dtを”積分するのはtについてです”と表記する。」としても、本当は正解のはずです。
頭の悪い教師なら×にしますが。

でも、dtの方が楽ですよね。だから、dtという表記が普及したんのです。世界各地で、積分については色んな表記があったと記憶しています。当然日本でも微積分は発明され...続きを読む