0は3の倍数でしょうか?
もしそうならば,0はすべての整数の倍数と考えてよいのでしょうか。

A 回答 (3件)

bin-chanさんの定義で合ってます。


ですので、結論から言うと0も-3も-6も3の倍数であると言えます。

ただし、ちょっと注意を。
倍数は小学校高学年で習いますが、負の数を習うのは中学になってからです。
で、最小公倍数を教えるために、0は倍数に含めない、また0の倍数は考えないそうです。最小公倍数=公倍数の中で最も小さいもの と教えるわけですから。(もっとも、最小公倍数=0を除く公倍数の中で最も小さいもの と言ってもいいような気もしますが、小学生には0の概念が理解しにくいと思われているみたいで)

その後、整数が負の数にまで拡張されて、0や負の倍数も出てくるわけです。
ちなみに、拡張後の最小公倍数の定義は「0を除き、正の公倍数の中で最も小さいもの」あるいは「0を除き、公倍数の中で絶対値が最も小さいもの」となるでしょうか。
    • good
    • 0
この回答へのお礼

最小公倍数についてもよくわかりました。どうもありがとうございました。

お礼日時:2002/03/11 14:09

回答します。



数学は苦手なので自信はないですが・・・

3の倍数とは,3と(自然数じゃなく)整数の積で表される整数なので,
0はもちろん整数全ての倍数だと思いますが?
    • good
    • 0

倍数とは「割り算したとき、余りが出ない」事だったと思うので「0」はOKでしょう。

この回答への補足

なるほど,ということは-3や-6も3の倍数と考えてよいのでしょうか?

補足日時:2002/03/11 11:18
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

QP(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数

『nを自然数, P(x)をn次の多項式とする。P(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数であることを証明せよ。』

数学的帰納法で解けるらしいのですが、分かりません。どなたか教えてください。

Aベストアンサー

別に帰納法でなくても証明可能だ。
いったん証明を書いてしまったが、削除。途中まで記載。

多項式全体の成す環を R[x] としよう(面倒なので R は実数体)
R[x] の R 上のベクトル空間としての基底を下記のように取る

P_0 = 1, P_1 = x, P_2 = x(x-1), P_3 = x(x-1)(x-2), ...

以下略

Q1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

この数式を求める式を教えてください。
よろしくお願いします。

Aベストアンサー

1/2+(1/2)*(-1)^n
n=0,1,2,...

Q(x,y,z)が(0,1,4),(0,2,1),(0,3,2),(0,

(x,y,z)が(0,1,4),(0,2,1),(0,3,2),(0,4,3)のとき、zをx,yで表すことはできますか。
よろしくお願いします。

Aベストアンサー

#3です。続きです。

24個全部について、zをx,yで表わしたい場合は、#3で求めた式を使って、24個を、
(x0,y,z0(y)),(x1,y,z1(y)),(x2,y,z2(y)),(x3,y,z3(y)),(x4,y,z4(y)),(x5,y,z5(y)) (y=1,2,3,4)
とするとき、
z=z0(y)(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)/{(x0-x1)(x0-x2)(x0-x3)(x0-x4)(x0-x5)}
+z1(y)(x-x0)(x-x2)(x-x3)(x-x4)(x-x5)/{(x1-x0)(x1-x2)(x1-x3)(x1-x4)(x1-x5)}
+z2(y)(x-x0)(x-x1)(x-x3)(x-x4)(x-x5)/{(x2-x0)(x2-x1)(x2-x3)(x2-x4)(x2-x5)}
+z3(y)(x-x0)(x-x1)(x-x2)(x-x4)(x-x5)/{(x3-x0)(x3-x1)(x3-x2)(x3-x4)(x3-x5)}
+z4(y)(x-x0)(x-x1)(x-x2)(x-x3)(x-x5)/{(x4-x0)(x4-x1)(x4-x2)(x4-x3)(x4-x5)}
+z5(y)(x-x0)(x-x1)(x-x2)(x-x3)(x-x4)/{(x5-x0)(x5-x1)(x5-x2)(x5-x3)(x5-x4)}

#3です。続きです。

24個全部について、zをx,yで表わしたい場合は、#3で求めた式を使って、24個を、
(x0,y,z0(y)),(x1,y,z1(y)),(x2,y,z2(y)),(x3,y,z3(y)),(x4,y,z4(y)),(x5,y,z5(y)) (y=1,2,3,4)
とするとき、
z=z0(y)(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)/{(x0-x1)(x0-x2)(x0-x3)(x0-x4)(x0-x5)}
+z1(y)(x-x0)(x-x2)(x-x3)(x-x4)(x-x5)/{(x1-x0)(x1-x2)(x1-x3)(x1-x4)(x1-x5)}
+z2(y)(x-x0)(x-x1)(x-x3)(x-x4)(x-x5)/{(x2-x0)(x2-x1)(x2-x3)(x2-x4)(x2-x5)}
+z3(y)(x-x0)(x-x1)(x-x2)(x-x4)...続きを読む

Qnが整数のとき、n^2が素数aの倍数ならばnはaの倍数である、は真ですか?

数学の問題を解いていると、nが整数のとき、
n^2が3の倍数⇔nは3の倍数 を証明せよ
n^2が5の倍数⇔nは5の倍数 を証明せよ
という問題がありました。
そこで、質問タイトルにあるように、
「n^2が素数aの倍数⇔nはaの倍数」
は成り立つかな?と思って証明しようと思い、
必要は明らかなので十分について
対偶を取って数学的帰納法で証明しようとしたのですが、うまくいきませんでした。

そもそもこの命題は真なのでしょうか。真なのでしたら、
出来るならば高校数学の範囲で証明を示してもらえないでしょうか。

Aベストアンサー

「n^2 が素数 p の倍数」なら「n が p の倍数」は真です. 証明は... 「高校数学」ってどこまで使っていいんでしたっけ?
・「ab が素数 p の倍数なら a か b が p の倍数」を使っていい → n^2 = n・n より自明.
・「素因数分解が一意である」ことを使っていい → ほぼ自明. n = p1 p2 ... と素因数分解すると n^2 = p1^2 p2^2 ... となって, 後者のどこかに p があるならそもそも前者のどこかに p がある.
・合同式と二項定理を使っていい → n^p ≡ n (mod p) を二項定理+帰納法で証明. あとは (p ≧ 3 を仮定していいので) n^p ≡ n^2 ・ n^(p-2) ≡ n となるので n^2 が p で割切れるなら n も p で割切れる.

Q『nを整数、pを素数とするとき、n^3がpの倍数ならばnもpの倍数であ

『nを整数、pを素数とするとき、n^3がpの倍数ならばnもpの倍数である』
の「n^3が」の部分は、2乗以上ならnの何乗であっても成り立つような気がするのですが、成り立ちますか?
また、何か命題を証明する際にこれを用いるときは、証明なしで使っていいものなのでしょうか?
ちなみに大学入試の記述試験を想定しての質問です。
よろしくお願いします。

Aベストアンサー

No3です。ミスりました。

下の定理0は「cは素数」という条件が抜けており、間違いです。
正しくは

定理0「整数a,b と素数p において、ab がp の倍数ならば,aまたはbがpの倍数」
です。
お詫びして訂正致します。


[補足]
定理0’「整数 a,b,c において,ab がc の倍数かつa とc が互いに素ならば,bはcの倍数」
も初等整数論の基本的な定理であり、やはり定理(-1)から示されますが、高校では無断で使用します。上の定理0は定理0’から即座に導かれます。


人気Q&Aランキング

おすすめ情報