長軸をa、短軸をbとしたときの楕円体の体積を教えてください。
正確に求めるのは困難だとおもうので、
良い近似値(ここでは正確性より単純性)があれば教えてください。
2b>a>bの範囲です。

また、下記のURLの回答が納得できないので、
それについても御教授ください。
http://oshiete1.goo.ne.jp/kotaeru.php3?q=11507

宜しくお願いします。

A 回答 (5件)

長軸と短軸だけを示されているということは、ここでは楕円体でも


「回転楕円体:楕円形を軸に対して回転してできる立体図形」
を指しているのでしょうか。

(x/a)^2 +(y/b)^2=1,z=0              (1)

で示される楕円をx軸まわり回転させたとき(^2は2乗を示す)その体積をVとすると

V=2π∫y^2dx = 2π{(b/a)^2}∫ (a^2-x^2)dx=(4/3)πa(b^2)

となります。(積分区間は0≦x≦a)
y軸まわりの回転のときも同様にして、体積=(4/3)π(a^2)bとなります。

(1)で示される楕円をx軸まわり回転させたときできる図形の方程式は

(x/a)^2 +(y/b)^2+(z/b)^2=1           (2)

となりこれは半径1の球を,x軸方向にa倍,y軸及びz軸方向にb倍したものと考えられ,容易に体積が求まります。先にnanashisan氏が示しているのがこの方法だと思います。

体積=(半径1の球の体積)×a×b×b=(4/3)πa(b^2)

更に次式で表される一般の楕円体

(x/a)^2 +(y/b)^2+(z/c)^2=1            (3)

に対しても同様にして
体積=(半径1の球の体積)×a×b×c=(4/3)πabc となります。

ちなみに(1)で表される楕円の面積については,半径1の円をx軸方向にa倍,
y軸方向にb倍したものと考えれば
面積=(半径1の円の面積)×a×b=abπ となります。旧課程の高校数学の「代数・幾何」では1次変換とからめてよくこのての問題が扱われていました。

参考になれば幸いです。

この回答への補足

お礼に示したURL先の「過少評価される傾向」
が分りました^^;

前立腺を計ってるんでしたね・・・
完全な長楕円体を計測しているものだと、
頭の中で置き換わってました^^;

補足日時:2001/01/13 12:37
    • good
    • 1
この回答へのお礼

言われてみればそのとおりです。
ところで、
http://www.ne.jp/asahi/prostate/psa/h/nich57.html
の最後の方の「過少評価される傾向」はなぜ出てくるのでしょう?

お礼日時:2001/01/13 12:30

積分計算すりゃいいわけですが,


そんなことしないで簡単にやりましょう.
nanashisan さんの回答パクっているようで,
気が引けています.
nanashisan さん,すみません.

楕円体の軸を x,y,z 方向とします.
楕円体の内部を x,y,z 方向に辺が向いた直方体で埋め尽くしてやります.
本当は無限個必要ですが,そこらへんはいい加減で勘弁.
楕円体の体積は(無限個の)直方体の体積の和.
で,どれかの軸(例えば x 軸)の方向に楕円体を引き延ばしてやります.
そうすると,直方体への分割の様子はそのままですが,
各々の直方体の体積は2倍になります.
x 軸方向だけ辺が2倍になるわけですからね.
で,楕円体の体積も2倍.
別に2倍に限らず,何倍でも良いわけですから,
楕円体の体積は x 軸方向の長さに比例します.
同様に,y 軸方向の長さにも,z 軸方向の長さにも
比例します.
すなわち,楕円体の主軸の長さを 2a, 2b, 2c とすると,
(この表現の方が普通のようなので,こうしました)
体積は abc に比例します.
a = b = c のとき,楕円体は半径 a の球(体積 4πa^3/3)
に帰着しますから,比例係数は 4π/3 のはず.
したがって,楕円体の体積は (4π/3)abc です.

同じような議論で,楕円の面積 πab も求められます.

なお,楕円体の表面積を問題にするときは,
上のような議論は使えません.
表面積は楕円積分の第1種と第2種が両方入った式になって
いたと思いますが,ちょっと思い出せません.
    • good
    • 0
この回答へのお礼

丁寧で分りやすい説明をありがとうございました。
積分の基本も忘れていて恥ずかしいかぎりです。

お礼日時:2001/01/13 12:32

球の体積 × 引っ張って伸ばした比率

    • good
    • 0
この回答へのお礼

確かにそのとおりです。
http://www.ne.jp/asahi/prostate/psa/h/nich57.html
を読んだために悩んでしまいました^^;

お礼日時:2001/01/13 12:27

楕円体ということだと、軸が3本あるんですよ。

a,bだけだと楕円の面積の話になります。お知りになりたいのはどっちだろ?
    • good
    • 1
この回答へのお礼

すみません。説明が足りませんでした。
回転楕円体で軸はa,b,bでしたがもう解決しました。
ありがとうございました。

お礼日時:2001/01/13 12:24

楕円の面積の求め方は判りますか?


判れば簡単。軸を決めて積分してやればパーフェクト。
    • good
    • 0
この回答へのお礼

ありがとうございました。
解決しました。

お礼日時:2001/01/13 12:20

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q楕円の体積の求め方、教えてください!

タイトルどおりなのですが、楕円の体積の公式を知っていらっしゃる方、教えていただけないでしょうか。。。むかしにやった覚えだけはあるのですが、はっきりとおもいだせないのです。
ちなみに、楕円の縦の長さと横の長さがわかっています。
よろしくお願いいたします。

Aベストアンサー

数学や科学については、公式を丸暗記するだけではなく、その性質を理解するように努めれば、たとえ公式を忘れたとしても他の問題から導くことが多いことを頭にいれておいてくださいね。

楕円は、正円を1方向につぶしただけの図形ですから、円の面積を単純にその扁平分だけ減少(または増加)させればいいだけです。#1の人に倣って、
 長半径=a(こちらを元の円の半径とします)
 短半径=b
とすれば、
 楕円の面積=円の面積×b/a
      =πa^2×b/a
      =πa×b
ですね。

同様に、楕円の回転体も球を変形させただけですから、
 楕円の体積=球の体積×b/a
      =4/3×πa^3 ×b/a
      =4/3×πa^2×b
でよいでしょう。

球の体積を忘れたら、底面の半径と高さが球の半径と同じ円錐を用意して、半球と(逆さまに見た)円錐の断面積の和が常に底面の面積と同じという性質を利用すれば、簡単に導けます。(円錐の底面に平行に断面を取りましょう。)

以上。

Q楕円体の表面積

 楕円体の表面積の求め方について教えてください。

Aベストアンサー

一般の楕円体はちょっとかんべんしてもらって,
回転楕円体
(1)  (x^2+y^2)/a^2 + z^2/c^2 = 1
の表面積に焦点を絞って回答します.

残念ながら No.1 と No.2 の回答は不正解のようです.

No.1 は楕円の面積の π×(長半径)×(短半径) から類推されているような
気がします.
一つの軸をスケール変換したときに,
平面図形の面積あるいは立体図形の体積,などはスケール変換と簡単に関連づけられて,
円の面積から楕円の面積,球の体積から楕円体の体積,
など求めることが可能です.
しかし,楕円の周長や,楕円体の表面積はそうはいきません.
参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=27302

No.2 は方針は合っていますが,傾きのことを忘れています.
曲線の長さを求めるときに √{1+(dy/dx)^2} の因子に相当するものを
考慮しないといけません.

z 一定の面での切り口は円で,その半径 R は(1)で x^2+y^2 = R^2 とおいたものですから
(1)  R = (a/c)√(c^2 - a^2)
です.
円周はもちろん 2πR.
z~z+dz の範囲からの表面積への寄与 dS は
(2)  dS = 2πR √{dR^2+dz^2} = 2πR √{1+(dR/dz)^2} dz
下図の斜線部が √{dR^2+dz^2} です.

        /  ↑
       /│  │
      / │  dR
     /  │  │
    /   │  ↓
    │   │
    │   │
   R│   │
    │   │
    z   z+dz

あとはこれを積分すればよく
(3)  S = ∫{-c~c} 2πR √{1+(dR/dz)^2} dz
を(1)を考慮して計算すればOKです.
ちょっと計算してみるとわかりますが,積分の本質的部分は
(4)  ∫{-c~c} √{c^4 + (a^2-c^2)z^2} dz
で,a>c か a<c かの分類が必要です.
結果は
a>c のとき
(5)  S = 2πa^2 + [πac^2/√(a^2-c^2)] log {[a+√(a^2-c^2)]/[a-√(a^2-c^2)]}
a<c のとき
(6)  S = 2πa^2 + [2πac^2/√(c^2-a^2)] arccos(a/c)
です.
a=c ならもちろん S = 4πa^2.

回転楕円体でなくて,一般の楕円体
(7)  x^2/a^2 + + y^2/b^2 + z^2/c^2 = 1
なら,z 一定の切り口が楕円ですし,傾きも方向によって異なります.
表面積の公式
(8)  ∬ √{1+(∂z/∂x)^2+(∂z/∂y)^2} dx dy
を使う方がわかりやすいかも知れません.

一般の楕円体はちょっとかんべんしてもらって,
回転楕円体
(1)  (x^2+y^2)/a^2 + z^2/c^2 = 1
の表面積に焦点を絞って回答します.

残念ながら No.1 と No.2 の回答は不正解のようです.

No.1 は楕円の面積の π×(長半径)×(短半径) から類推されているような
気がします.
一つの軸をスケール変換したときに,
平面図形の面積あるいは立体図形の体積,などはスケール変換と簡単に関連づけられて,
円の面積から楕円の面積,球の体積から楕円体の体積,
など求めることが可能です.
しかし,楕円...続きを読む

Q3重積分 楕円体での変数変換

3重積分において普通の球座標の変数変換は理解できるのですが
 
D{ (x,y,z) | 楕円体 x^2/a^2+y^2/b^2+z^2/c^2≦1 (a,b,c>0) }

で x=arsinθcosφ,y=brsinθsinφ,z=crcosφと変換しますが
球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosφにa,b,cがつく理由を教えてください

Aベストアンサー

>x=arsinθcosφ,y=brsinθsinφ,z=crcosφと変換しますが
球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosφにa,b,cがつく理由を教えてください.。 ←間違い。
正しくは
「x=arsinθcosφ,y=brsinθsinφ,z=crcosθと変換しますが
球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosθにa,b,cがつく理由を教えてください.。」

楕円体だからに決まってるじゃないですか.?

つまり、
積分変数を独立した(直交する座標)変数(r, θ, φ)に変換して、変換後の3重積分を独立した直交座標変数による逐次積分(累次積分)に持ち込むためでしょう。
この場合、積分領域Dは
 x^2/a^2+y^2/b^2+z^2/c^2≦1にx=arsinθcosφ,y=brsinθsinφ,z=crcosθを代入すると 左辺=r^2となって 楕円体の領域の式が 「r^2≦1」とrだけの簡単な領域の式に変形され、
D'= { (r, φ, θ) | r^2≦1, 0≦φ<π, 0≦θ≦π }
 = { (r, φ, θ) | 0≦r≦1, 0≦φ<π, 0≦θ≦π }
となります。(結果として煩わしいa,b,cが3重積分の外に括り出せます。)

>x=arsinθcosφ,y=brsinθsinφ,z=crcosφと変換しますが
球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosφにa,b,cがつく理由を教えてください.。 ←間違い。
正しくは
「x=arsinθcosφ,y=brsinθsinφ,z=crcosθと変換しますが
球座標の変換 x=rsinθcosφ,y=rsinθsinφ,z=rcosθにa,b,cがつく理由を教えてください.。」

楕円体だからに決まってるじゃないですか.?

つまり、
積分変数を独立した(直交する座標)変数(r, θ, φ)に変換して、変換後の3重積分を独立した直交座標変数による逐次積分(累次積分)に持ち込むた...続きを読む

Q楕円の回転体の体積を求める問題なんですけど、、

「楕円:Xの二乗+1/2(Y-1)の二乗=1
 の内部で、Yが0以上にある部分をX軸の周りに回転して得られる立体の体積  を求めよ」

という積分により体積を求める問題です。
スタンダードという解説が非常に不親切な問題集に載っているもので、また、
積分の計算過程などもよく分かりません。
よろしくおねがいします。

Aベストアンサー

[#1の補足]

計算の都合上
V/(2π)=・・・=∫_(θ=π/2 to θ=-π/4)y^2dx ・・・(1)
(1)=・・・=∫_(π/2 to -π/4){1+(√2)sinθ}^2(-sinθ)dθ [・・・(2)とします]

ともってきていますので, 求めるVは(2)を計算したあとで, 分母2πを払ったもので合うはずです.[立式等が誤っていなければ.]
V=2π×[(2)式の値]

答えるときはご注意ください.でも実際の計算の上では(好みはありますが)有力な方法です.

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q【三重積分】球の体積の求め方

x=rsinθcosω
y=rsinθsinω
z=rcosθ

上記の変数変換を使った三重積分で球の体積を求める時、θの範囲が0≦θ≦πとなるのはなぜでしょうか?(ωの範囲は0≦ω≦2πとなるのに、なぜθは0≦θ≦2πにはならないのでしょうか。)

Aベストアンサー

参考URLの例5の図を見てください。球座標の図があると思います。ω=φと置き換えてください。点PをP(x、y、z)とします。球の体積を考えるのでrは一定です。

θはz軸の正の方向とベクトルOPのなす角です。例えばP(0,0、r)のときはθ=0、P(0,0、-r)のときはθ=πです。0≦ω≦2π、0≦θ≦π、rは一定とすればxyz空間に半径rの球が描けることが分かるかと思います。

参考URL:http://ksgeo.kj.yamagata-u.ac.jp/~kazsan/class/geomath/juusekibun.html

Q楕円体の慣性モーメントの式

大学の授業で今、慣性モーメントを習っているのですが、少し疑問に思ったので教えてください。半径の長さx, y, zの楕円体の慣性モーメントはなぜIxx = (2/5)yzM Iyy = (2/5)zxM Izz = (2/5)xyM
Ixy = Iyx = Ixz = Izx = Iyz = Izx = 0と表せるのでしょうか?
できればインテグラルを使った式の形で教えていただきたいです。お願します。

Aベストアンサー

楕円体x^2/a^2+y^2/b^2+z^2/c^2=1の慣性モーメントは、
http://www12.plala.or.jp/ksp/mechanics/inertiaTable1/
にあるように、
Ix=(1/5)(b^2+c^2)M
Iy=(1/5)(c^2+a^2)M
Iz=(1/5)(a^2+b^2)M
なので、とりあえずこれを求める方法を書いておきます。
楕円体の密度をρ、
x^2/a^2+y^2/b^2+z^2/c^2=1の体積領域をvとすると、
Ix=ρ∫[v](y^2+z^2)dxdydz
x=aX,y=bY,z=cZと変数変換すると、dxdydz=(abc)dXdYdZ、
X^2+Y^2+Z^2=1の体積領域をVとすると、
Ix=ρ∫[V](b^2Y^2+c^2Z^2)(abc)dXdYdZ
Vは球だから、
Z=rcosθ,Y=rsinθsinφ,X=rsinθcosφと変数変換すると、
dXdYdZ=(r^2*sinθ)drdθdφだから、
Ix=ρ(abc)∫[0→1]dr∫[0→π]dθ∫[0→2π]dφ{b^2*r^2*(sinθ)^3*(sinφ)^2+c^2*r^2*(cosθ)^2}
=ρ(abc)(1/5)(4π/3)(b^2+c^2)

M=ρ∫[v]dxdydz=ρ∫[V](abc)dXdYdZ
=ρ(abc)∫[0→1]dr∫[0→π]dθ∫[0→2π]dφ(r^2sinθ)
=(ρabc/3)(2π)∫[0→π]sinθdθ
=(ρabc/3)(4π)

よって、Ix=(1/5)(b^2+c^2)M
Iy,Izも同様
Ixy=∫[v]xy dxdydz なら、対称性より積分値は0.
Iyz,Izxなども同様

楕円体x^2/a^2+y^2/b^2+z^2/c^2=1の慣性モーメントは、
http://www12.plala.or.jp/ksp/mechanics/inertiaTable1/
にあるように、
Ix=(1/5)(b^2+c^2)M
Iy=(1/5)(c^2+a^2)M
Iz=(1/5)(a^2+b^2)M
なので、とりあえずこれを求める方法を書いておきます。
楕円体の密度をρ、
x^2/a^2+y^2/b^2+z^2/c^2=1の体積領域をvとすると、
Ix=ρ∫[v](y^2+z^2)dxdydz
x=aX,y=bY,z=cZと変数変換すると、dxdydz=(abc)dXdYdZ、
X^2+Y^2+Z^2=1の体積領域をVとすると、
Ix=ρ∫[V](b^2Y^2+c^2Z^2)(abc)dXdYdZ
Vは球だから、
Z=...続きを読む

Q楕円の変数変換

楕円E:(x/a)^2+(y/b)^2≦1 に関して
面積 ∬_E dxdy を求めるとき、
変数変換 x=ar*cosθ,y=br*sinθ を行うと、楕円 E の r,θ での表示 E' はどのようになるのでしょうか?

Aベストアンサー

E={(x,y)|(x/a)^2+(y/b)^2≦1}
E'={(r,θ|0≦r≦1,-π≦θ<π}
 または
E'={(r,θ|0≦r≦1,0≦θ<2π}
で良いでしょう。

なお、積分の変数変換でヤコビアン|J|を忘れないようにして下さい。
つまり
dxdy=|J|drdθ=abrdrdθ
∫[E] dxdy=∫[E'] abrdrdθ
 =4ab∫[0,π/2] dθ∫[0,1] rdr
 =2πab[r^2/2](r=1)
=πab
ということです。

Qヤコビアンの定義について

今解いている二重積分の問題があるのですが、積分領域が楕円の内部になっています。普通にxとyで積分領域を決めようとするとめちゃくちゃめんどくさくなります。そこでヤコビアンの定義を使ったら楽に解けるんではないかと思っているのですが、使えるんでしょうか?楕円のパラメータは
x=acosθ
y=bsinθ
で、aとbで違ってくるので使えないでしょうか?
教えてください!

Aベストアンサー

楕円の場合は、単純に極座標にしないで、
x=a*r*cosθ
y=b*r*sinθ
と置くとよいと思います。rとθが変数です。
ヤコビアンは、
|J|=(∂x/∂r)(∂y/∂θ)-(∂x/∂θ)(∂y/∂r)
 =acosθ*brcosθ+arsinθ*bsinθ
 =abr
です。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報