No.2ベストアンサー
- 回答日時:
ニュートンリングで干渉縞が生じる原因についてはすでにご存じかと思いますが、復習も兼ねて図にしておきますと、下のように球面のレンズを通過する光がレンズを通過したあと下の平面で反射し、それがレンズの下面で干渉して強めあうなら明るい環、打ち消し合うなら暗い環になるということです。
中心
↑
O A
|□□□□□□□□□□□□□□□□□□□□
|□□□□レンズ□□□□□□□□□□
|□□□□□□□□□□□□□ ↑↓
|□□□□□□□□ ↑↓距離d(片道)
_________________U_____
注意しなくてはならないのはレンズ裏面では自由端反射であるのに対し、平板での反射は固定端反射で位相がπずれるということです。よって干渉条件は
明輪: 2d=(k+1/2)λ
暗輪: 2d=kλ
と表されます。ここにλはその媒体中での波長、kは非負整数です。
次なる問題はdと、リングの半径r(図のOA間の距離)と、レンズの曲率半径Rとの関係を求めることです。
やり方はいくつかありますが、簡単には三平方の定理でできます。
いま三平方の定理から
(R-d)^2+r^2=R^2
が成立します。両辺をR^2で割って、さらに整理すると
1-2(d/R)+(d/R)^2+(r/R)^2=1
を得ます。
ここにd≪Rであるので、(d/R)の2次の項を無視する近似を行い
1-2(d/R)+(r/R)^2≒1
rについて解くと
r=√(2Rd)
を得ます。これがリングの半径、レンズの曲率、レンズと平板の隙間の関係を表す式です。
さてとりあえず明輪を仮定して今回の問題を解いてみます。
あるリング(*1)の半径が6[mm]とのことですので、
2d=(k+1/2)λ
2d=r^2/R
の二つの関係式から、
(k+1/2)λ=r^2/R
を得ます。ただしkの具体的な値はまだ分かりません。(この明輪が何番目であるか問題で与えられていないので)
次に、ここから数えて10番目の輪については同様に
((k+10)+1/2)λ=r'^2/R
の関係が成り立ちます。ここで10番目の輪の半径はr'で表しました。未知数がRとkの二つで式が二つありますから解けます。
題意の数字を代入すると
(k+1/2)×589×10^(-9)={6×10^(-3)}^2÷R
(k+10+1/2)×589×10^(-9)={7.8×10^(-3)}^2÷R
となります。上の式から下の式を引けばkが容易に消去されて(*2)
5890×10^(-9)=24.84×10^(-6)÷R
よって
R=4.22 [m]
と求められます。
計算ミスをしているかも知れませんので、念のためhiro2002さんご自身で式をチェックしながら読んで頂ければ幸いです。
-----
*1 この問題では明輪を仮定して解きましたが、干渉条件の式の1/2が(*2)のところで打ち消し合って消えます。暗輪でも結局同じ式になって同じように解けることはすぐ分かると思います。
とても丁寧に教えてくださってどうもありがとうございます。
ご説明をじっくり読んでからやってみたらきちんと解けました。
本当にありがとうございました。
No.5
- 回答日時:
Umadaさん, いつも質問者に対しわかりやすくじっくり説明なさる姿勢にこの場を借りて敬意を表します.
筆者も実は回答したり締め切られたりした後で「しまった!」というのは人様よりもありまして, 足りない点は皆様よりご教示いただいけると大変ありがたく思います.
今後ともこちらこそよろしくお願いいたします.
No.4
- 回答日時:
oshiete_gooさん、改めまして初めまして。
先般の「垂心/重心」もそうでしたが、どうもそそっかしくてお恥ずかしいです。4[m]ではちょっと大きいかな、とも思ったのですがとんでもないところで勘違いをしていたようです。
ご指摘ありがとうございました。今後ともよろしくお願いします。
No.3
- 回答日時:
補足です
Umadaさんは既にお気づきとは思いましたが, 質問者に対して念のため.
原題どおり「直径が」6mmと7.8mmとすると
>(k+1/2)×589×10^(-9)={6×10^(-3)}^2÷R
>(k+10+1/2)×589×10^(-9)={7.8×10^(-3)}^2÷R
の右辺は, {3×10^(-3)}^2÷R と{3.9×10^(-3)}^2÷R
で,以下ちょうど4倍ずれて
>5890×10^(-9)=24.84×10^(-6)÷R
>よって
>R=4.22 [m]
>と求められます。
は 6.21×10^(-6)÷R
で, R=1.0543... より R=1.05 [m]
と思われます.皆様,誤りがあればご訂正下さい.
No.1
- 回答日時:
曲率半径R、波長λの反射光によってできる干渉縞の半径rは明るいところで
r=((m+1/2)λR)^(1/2)
で、mは0又は正整数なので、mとRを未知数にして数を代入してやれば連立方程式が出来上がりますよね。これを解けばRが出てくると思いますよ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
つい集めてしまうものはなんですか?
人間誰もは1つ「やたらこればかり集めてしまう」というものがあるもの。 あなたにとって、つい集めてしまうものはなんですか?
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
【お題】引っかけ問題(締め切り10月27日(日)23時)
【大喜利】 「日本で一番高い山は富士山……ですが!」から始まった、それは当てられるわけ無いだろ!と思ったクイズの問題
-
ちょっと先の未来クイズ第4問
11月ごろに発表される、2024年の「新語・流行語大賞」にノミネートされる言葉を書けるだけ書いてください。
-
架空の映画のネタバレレビュー
映画のCMを見ていると、やたら感動している人が興奮で感想を話していますよね。 思わずストーリーが気になってしまう架空の感動レビューを教えて下さい!
-
ニュートン環の中心は、なぜ暗円になるのか?
物理学
-
物理についての質問です。 ニュートンリングで 中心は式を書くと暗くなると出てくるのですが、中心は空気
物理学
-
ニュートンリングについてです。
物理学
-
-
4
数え方(物理)物理のニュートンリングについて質問です。問、λ=540nm の光を用いたところ中
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
遠近方の現象はなぜ起きる
-
光を凸レンズで集光して風船を...
-
ペットボトルの水を通して見た...
-
物理 レンズの問題 平面鏡を...
-
水晶体に色収差ってあるのですか
-
虚像はスクリーンに写らない?
-
平凸レンズ
-
この問題の焦点距離について教...
-
物理の凹レンズや凹面鏡につい...
-
高校物理、光学、フレネルの複...
-
凸レンズの上下左右逆の考え方...
-
男性が後ろ姿を見つめるのって...
-
コンクリートブロック用の反射...
-
ブラッグの式で使われるn次反射...
-
振動数は何故変化しないの?
-
dsinθ=mλという式の導出
-
『水晶玉』を覗くと反対側の景...
-
どれが本当の自分の等身なので...
-
水からガラスへの入射
-
指と指の隙間にできる謎の影の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報