
No.1ベストアンサー
- 回答日時:
chaborinさんのご質問の「理論値」の理論がどの範囲まで考えているか、によってお答えは変わってくると思います。
(非弾性挙動や材料の履歴まで含めて精密に材料をモデル化すれば、理論値と測定値のずれは限り無く小さくなるのですから)ここではchaborinさんの「理論値」が、
(1)試料の変形は、1次元の単純なはり(梁)の曲げで表される
(2)試料を構成する材料は線形(弾性)材料
なる仮定に基づいて、2点で支持して中央に荷重を与えた場合のたわみを計算した数値のことに解釈するとします。
まず(1)ですがそのたわみ量の計算においては通常
(a)断面の形状・寸法は変形によっても変化しない
(b)各断面は変形しても、傾かない
という仮定をおいて解きます。変形量が微小の場合はよいのですが、(a)(b)ともその妥当性が怪しくなってくることはお分かりかと思います。試料の上面は圧縮されるので少し太り、下面は引っ張られて痩せます。
(b)は言葉で読むと分かりにくいかも知れませんが、次のようなことです。
最初に下のように試料の側面に、鉛直な線を引いておきます。荷重をかけない状態では総ての線は平行です。
荷重
↓
□□□□□□□
○ ○
これに荷重をかけると全体がしなり、側面に描いた線もすこし斜めに傾きます(試料の左側では右上がり、試料の右側では左上がり)。しかし一番簡単な近似ではこれを無視して解析します。(詳しくは材料力学の教科書の「はりの曲げ」辺りを読んでみて下さい)
さらに上記の解析では必ず「ヤング率」という数字を使うと思います。ご存じかと思いますがヤング率は材料によって決まる数値で、ひずみと応力の間の比例係数です。
この比例の様子を図に表すと下のようになります。
応力
↑
│ *
│ *
│ *
│*
└─────→ひずみ
このようにひずみと応力が完全に比例する材料を「線形材料」や「(完全)弾性材料」などと呼びます。
しかし現実のの材料はひずみ-応力の関係がどこまでも比例するわけではありません。例えば下のように、ひずみが大きくなると応力とひずみが比例しなくなるのが一般的です。
応力
↑
│ *
│ *
│ *
│*
└─────→ひずみ
このような挙動を「非線形挙動」「非弾性挙動」などと呼びます。こうなるともはや、ヤング率を定数と見なせなくなります。従って最初の仮定の(2)も怪しくなってきます。
まとめますと、単純なはり(梁)の曲げで求めた荷重-たわみの理論値は、現実の材料と
(1)はりの断面形状・寸法の変化を無視している
(2)解析の際に、はりの断面の変形に伴う傾きを無視している
(3)解析では材料を線形としているが、実際の材料は非線形の挙動を示す
という点で差異があり、その分が誤差になるということです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
おすすめ情報