マンガでよめる痔のこと・薬のこと

2-ブロモ2-メチルブタンをエタノール中ナトリウムエトキシドで反応させると、メチル基の水素(収率69%)とエチル基の水素(31%)を攻撃する二つのE1反応が教科書に書いていますが、Sn1反応は起こらないのですか?
なぜですか?

A 回答 (1件)

それらはどちらもE2反応です。


この条件ではSN1もE1も起こりません。
それらの反応が起こるのは酸性あるいは中性に近い、いわゆる「加溶媒分解条件」でのみです。具体的には、基質を単にエタノールや水に溶かしたような条件のことです。
ナトリウムエトキシドのような求核剤(あるいは強塩基)の存在下ではE2やSN2が起こります。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございました

お礼日時:2010/04/27 23:03

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Qグリニャール反応で・・・

グリニャール試薬と二酸化炭素を反応させるとカルボン酸ができるとありますが・・・

まずR-が二酸化炭素のCを攻撃してカルボン酸ができるのはわかりますが、そのカルボン酸のCにもR-が攻撃してジオールができると思うんですがどうも違うもたいです。
このgemのジオールができない理由を教えてください。



R-(マイナス)

Aベストアンサー

たとえば、エステルはグリニャール試薬と反応してケトンやアルコールを生成します。
しかしながら、グリニャール試薬と二酸化炭素の反応で生成するのは、カルボン酸の塩(R-COOMgX:Xはハロゲン)です。
このとき、酸素原子はエステルなどの場合と異なり、アニオン(R-COO-)の形になっているために、大きな負電荷を有しています。そのため、その負電荷の影響で、COOの炭素原子上の電子密度が上昇し、求核剤であるグリニャール試薬の攻撃を受けにくくなります。
また、グリニャール反応で生じるR-COOMgXの溶解度が低いこともしばしば起こり、これが次の反応が起こりにくくなる原因の1つになります。
これらの理由によって、2個目のグリニャール試薬による攻撃が起こりにくいと考えられます。

ちなみに、通常、gemジオールは不安定であり、カルボニル化合物へと異性化します。したがって、仮に2個目のグリニャール試薬が反応することがったとしても、gemジオールではなくケトンが生じることになります。

Q有機化学 SN1、SN2、E1、E2反応について教えていただきたいです

有機化学 SN1、SN2、E1、E2反応について教えていただきたいです。
有機化学を復習していて、次のような条件で各反応が起こりやすいと参考書に書いてありました。


(1)SN1反応とE1反応 → 求核性の低い試薬、第三級ハロゲン化アルキル、極性溶媒

(2)SN2反応とE2反応 → 求核性の高い試薬、第一級ハロゲン化アルキル(SN2)、第三級ハロゲン               化アルキル(E2)、無極性溶媒
 

ここで、疑問に思ったのですが、(1)でなぜ求核性の低い試薬を用いたほうが反応が起こりやすいのでしょうか。(1)と(2)ともに求核性の高い試薬を用いた方が反応は起こりやすいのではないでしょうか。また、E2反応で第三級の方が起こりやすいのは、求核試薬が攻撃できるプロトンがより多いため、という解釈であっていますでしょうか。よろしくお願いいたします。

Aベストアンサー

まず、求核性と塩基性を分けて考えるべきです。置換反応を起こすのは求核剤としての作用であり、脱離を起こすのは塩基としての作用です。
ところが、通常、求核剤は塩基性を有しており、強い求核剤は塩基性も強い傾向があります。
つまり、第三級ハロゲン化アルキルに強い求核剤を作用させても、SN2型の反応は立体障害のために起こりませんよね?その一方で、その求核剤の塩基としての作用はその影響を受けにくいので(E2の反応機構を考えてください)、事実上、塩基としての作用が優先して脱離(E2)が起こります。
それに対して、弱い塩基(あるいは求核剤)を用いた場合、基質が第三級ハロゲン化アルキルであればSN2は起こりませんし、E2を起こすほどの強い塩基は存在しませんので、カルボカチオンが生じる反応が重要になってきます。カルボカチオンが生じれば、SN1反応が起こりますが、それの副反応としてE1が起こります。E1がカルボカチオン中間体を経由していることをお忘れなく。この条件は加溶媒分解条件と呼ばれ、反応式に含まれるのは水やアルコールといった溶媒のみであり、NaOHなどは含まれません。反応条件として加溶媒分解条件が書かれていればSN1かE1であり、NaOH、NaOCH3などの強塩基(あるいは強い求核剤)が書かれていればSN2かE2です。特に脱離反応に関しては、E1とE2を区別するには反応条件を見るしかありません。

>また、E2反応で第三級の方が起こりやすいのは、求核試薬が攻撃できるプロトンがより多いため、という解釈であっていますでしょうか。
そうではないと思います。第三級ハロゲン化アルキルの方が炭素-ハロゲン結合が切れやすいからです。教科書によってはその結合エネルギーの差が記載されているはずです。このことには結合が切れて生じるカルボカチオンの安定性の差が反映されていることになります。


>(1)でなぜ求核性の低い試薬を用いたほうが反応が起こりやすいのでしょうか。
上述のように、求核性の高い試薬を用いるとE2やSN2が起こるからです。特にこの場合にはE2が問題になります。ただし、生成物がE1とおなじになることが多いので、生成物からの判別は困難ですけど。

まず、求核性と塩基性を分けて考えるべきです。置換反応を起こすのは求核剤としての作用であり、脱離を起こすのは塩基としての作用です。
ところが、通常、求核剤は塩基性を有しており、強い求核剤は塩基性も強い傾向があります。
つまり、第三級ハロゲン化アルキルに強い求核剤を作用させても、SN2型の反応は立体障害のために起こりませんよね?その一方で、その求核剤の塩基としての作用はその影響を受けにくいので(E2の反応機構を考えてください)、事実上、塩基としての作用が優先して脱離(E2)が起こります。
...続きを読む

QL体とD体

糖はD体、アミノ酸はL体の異性体で構成されますが、異性体のD体とL体の見分け方を教えてください。

Aベストアンサー

 構造式を見てDとLを見分ける方法についての質問と解釈して解答します。
 D、L表示法は糖やアミノ酸の絶対配置が求められる以前からある表記法です。(+)-グリセルアルデヒドにD、(-)-グリセルアルデヒドにLを接頭 辞としてつけます。DかLか見分けたい化合物(糖やアミノ酸)に含まれる不斉炭素のうち、IUPACルールにおいて最も番号の大きい不斉炭素の絶対配置がD-(+)-グリセルアルデヒドと等しい場合にD体とし、L-(-)-グリセルアルデヒドと等しい場合をL体とします。因みにD-(+)-グリセルアルデヒドはFischer投影式において、上がCHO、右がOH、左がH、下がCH2OHとなる構造です。
 もうひとつ言っておくと、L体の糖やD体のアミノ酸もちゃんと存在します。血液型を決める多糖の構成成分にはL-フコースがあり、哺乳動物の脳にはD-セリンとD-アスパラギン酸が存在し、脳の高次機能に関係しているのではないかと考えられています。

Q水のPKaなんですが

こんばんは

水のPKa値はどのようにして求めるのでしょうか
数値だけならどこにでものっているのですが・・・

Aベストアンサー

水の電離のイオン積[H+][OH-]=10^-14から求まります。

Ka=[H+][OH-]/[H2O]
 =10^-14 / (1000/18)
 =1.8*10^-15
pKa=-log Ka=14.7

Qグリニャール反応について

グリニャール反応の後処理で、飽和の塩化アンモニウム水溶液を用いる理由がいまいちわかりません。アルコキシドを加水分解するのにあたって、酸がつよいと脱水が起きてしまうので、それを防止するためでしょうか?有機の教科書には水酸化マグネシウムの懸濁液を処理するためと書いてあるのですが、意味がわかりません。お願いします。

Aベストアンサー

なるほど、まあ後処理の際に酸の当量が少ないと残ったMgは一緒に入る水で水酸化マグネシウムになりますよね、水酸化マグネシウムは前記の通り水にもあまり溶けません。かといって鉱酸(塩酸、硫酸、硝酸など)を大量に加えるとご想像の通り脱水が起きる可能性もありますし、中和が激しいので中和熱だけでも危険です。また塩化アンモニウムの飽和水溶液には分液操作の際に、塩析といって水層に混ざってしまうアルコールの量を減らす効果もあります。溶液が少し酸性なだけでいい上に、過剰量の酸を用いたい場合は出来るだけ弱い酸を使うのが安全で妥当なんでしょうね。塩化アンモニウムは世にありふれている塩酸とアンモニアから出来ているので安価に入手できるというのもメリットです。

Q安定性が第三級>第二級>第一級になるのは何故?

学校の課題で、安定性がこのようになるのは何故なのか説明しなければいけないのですが、教科書(「パイン有機化学I」p202)を読んでもよくわかりません。

超共役や誘起効果が関わると思うのですが、それをどのように理解したら「第三級>第二級>第一級」と安定性が説明できるんでしょうか??

わかりやすいHPなどでも結構です。
急ですが、明日中にお願いします。

Aベストアンサー

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴においては、単結合が切れたような構造は考えませんが、超共役というのは、C-H結合の切れた構造を含む共鳴のようなものと考えればわかりやすいと思います。
図はパインの教科書にも書かれていると思いますが、C-H結合が切れた構造においては、形式的に、その結合に使われていた電子対が、正電荷を持っていた炭素原子に移動して、その正電荷を中和しています。その結果、正電荷は、切れたC-H結合を有していた炭素上に移動します。このことは、共鳴の考え方によれば、超共役によって、正電荷が分散した(非局在化した)ということになり、安定化要因になります。

要するに、超共役というのは、単結合の切れたような構造を含む共鳴のようなものであり、その構造がカルボカチオンの正電荷を非局在化させ、安定化に寄与するということです。正電荷を持つ炭素に結合しているアルキル基の数が多いほど、上述の超共役が起こりやすくなり、カルボカチオンが安定化されるということです。

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴...続きを読む

Qてこの原理について

溶液の相互溶解度という実験で、メタノール-シクロヘキサン系を用いて実験を行い、溶解度曲線を作製しました。
この溶解度曲線を用いて、「てこの原理」について教えてください。
詳しく載っているサイトでも構いません。
よろしくお願いします!

Aベストアンサー

偶然ってすごいですね。2度手間になってすみません。

このような二成分系の溶解度曲線は慣れるまでピンとこないと思います。おそらく、二成分と二相が混同していると思うのでその点を踏まえて説明します。

まず、二成分系では温度によって一液相にも二液相にもなります。実験書では曲線ACBの外側では一相、内側では二相で存在します。
例えば、油と水を混合したとき、お互いに溶解度が小さいので二相に分離しますよね?しかしこの状態でも水の相にも微量ですが油が溶けており、また油の相にも微量の水が溶解しています。このことは水が微量溶けている相と水が大量に溶けている相に分離していると考えるのも同じです。実験書の図1が水の百分率を示していると考えた場合、水が微量含まれている相の組成がWaで、大量に含まれている相はWbで表されます。
 てこの原理はそれぞれの成分比とは関係なくて、形成して二相の重量比をあらわします。実験書で説明すると、Waの成分の相とWbの成分の相の重量比はbxの長さとaxの長さの比であらわされます。
Wa成分の相の重量をGa、Wb成分の相の重量をGbとおくとてこの原理は以下の式で表されます。
  Ga:Gb = bxの長さ:axの長さ

偶然ってすごいですね。2度手間になってすみません。

このような二成分系の溶解度曲線は慣れるまでピンとこないと思います。おそらく、二成分と二相が混同していると思うのでその点を踏まえて説明します。

まず、二成分系では温度によって一液相にも二液相にもなります。実験書では曲線ACBの外側では一相、内側では二相で存在します。
例えば、油と水を混合したとき、お互いに溶解度が小さいので二相に分離しますよね?しかしこの状態でも水の相にも微量ですが油が溶けており、また油の相にも微量の水が溶...続きを読む

QSN2反応の脱離基と求核剤について教えてください。

私は高校3年生で、独学で有機化学を勉強しているものです。
SN2反応における脱離基と求核試薬についての質問です。

まず、求核剤の強さとは電気陰性度の減少する方向(電子を相手に渡しやすい)に強くなる、つまりハロゲン化イオンであるなら、I->Br->Cl->F-の順になることは理解できます。

一方、脱離基としての優劣はその対応する酸が強酸であるかどうかということなので(以下にHXがH+とX-になりやすいか)、これもI->Br->Cl->>F-となることは理解できます。

私が疑問に思ったのはここからです。たとえばCH3BrにI-が求核攻撃を行い、I…CH3…Brという遷移状態になります。参考書ではここではBrが抜けていますが、Brが抜けると先ほどの脱離基としての優劣に逆らってしまうのではないでしょうか?
そもそも、I-は「強い求核性を持ち、優れた脱離基」でというところに強い矛盾を感じます。

ネットで探しても「溶媒で変わる」とありますが、溶媒でどう変わるのかも分かりません。

どなたか私にも分かりやすいようにご説明をお願いします。
よろしくお願いします。

私は高校3年生で、独学で有機化学を勉強しているものです。
SN2反応における脱離基と求核試薬についての質問です。

まず、求核剤の強さとは電気陰性度の減少する方向(電子を相手に渡しやすい)に強くなる、つまりハロゲン化イオンであるなら、I->Br->Cl->F-の順になることは理解できます。

一方、脱離基としての優劣はその対応する酸が強酸であるかどうかということなので(以下にHXがH+とX-になりやすいか)、これもI->Br->Cl->>F-となることは理解できます。

私が疑問に思ったのはここからです。たと...続きを読む

Aベストアンサー

『I-は「強い求核性を持ち、優れた脱離基」で』というところは次のように理解して下さい。
CH3Brは強い求核性をもつI-と反応する。生じたCH3IはIが優れた脱離基であるために、CH3Brよりも反応性が高い。
しかしながらその反応の相手となるのは、Br-ではなく、求核性の大きいI-であるので、生じるのはCH3Iであり、結果的に正味の変化はない。もちろん、反応の前後で別のヨウ素原子がCH3にくっついている。
同様にして、その時点で反応していないCH3Brも最終的にはCH3Iになる。
・・・ということで矛盾しませんよね?

溶媒云々は下記のとおりです。NaIはアセトンに溶けるがNaBrは溶けない。
したがって、CH3BrなどにNaIのアセトン溶液を加えれば、CH3Iが生じ、NaBrの沈殿が生じる。沈殿というのは、反応系外に存在すると考えるので、反応溶液の化学平衡は沈殿の生じる方向に一方的に移動する。したがって、CH3BrとCH3Iのどちらが生じるかということを心配しなくて済むのでわかりやすいということです。

しかしながら、わかりやすいかどうかに関わりなく、前半で述べたようにCH3Iが優先的に生じますので、アセトンを使うメリットというのは、反応の進行が視覚的にわかりやすいとか、ろ過することによって容易にNaBrを除けると言ったような、操作上の利点ということになると思います。それが拡大解釈されたということもあるでしょう。

『I-は「強い求核性を持ち、優れた脱離基」で』というところは次のように理解して下さい。
CH3Brは強い求核性をもつI-と反応する。生じたCH3IはIが優れた脱離基であるために、CH3Brよりも反応性が高い。
しかしながらその反応の相手となるのは、Br-ではなく、求核性の大きいI-であるので、生じるのはCH3Iであり、結果的に正味の変化はない。もちろん、反応の前後で別のヨウ素原子がCH3にくっついている。
同様にして、その時点で反応していないCH3Brも最終的にはCH3Iになる。
・・・ということで矛盾しません...続きを読む

Q水素結合とはどういうものですか?

現在、化学を勉強している者です。水素結合についての説明が理解できません。わかりやすく教えていただけないでしょうか?また、水素結合に特徴があったらそれもよろしくお願いします。

Aベストアンサー

要は、「電気陰性度の大きい原子に結合した水素と、電気陰性度の大きい原子の間の静電的な引力」です。
電気陰性度の大きい原子というのは、事実上、F,O,Nと考えて良いでしょう。
電気陰性度の大きい原子と結合した水素上には正電荷(δ+)が生じます。また、電気陰性度の大きい原子上には負電荷(δー)が存在します。

水素が他の原子と違うのは、その価電子が1個しかないことです。つまり、他のイオンとは異なり、H+というのは原子核(通常は陽子)のみになります。他のイオンの場合には、内側にも電子格殻が存在しますので、原子格がむき出しになることはありません。
ご存じと思いますが、原子核というのは原子のサイズに比べてはるかに小さいために、H+というのは他のイオンとは比べ物にならないほど小さいといえます。もちろん、正電荷を持つ水素というのは水素イオンとは異なりますので、原子殻がむき出しになっているわけではありませんが、電子が電気陰性度の大きい原子に引き寄せられているために、むき出しに近い状態になり、非常に小さい空間に正電荷が密集することになります。
そこに、他の電気陰性度の大きい原子のδーが接近すれば、静電的な引力が生じるということです。
そのときの、水素は通常の水素原子に比べても小さいために、水素結合の結合角は180度に近くなります。つまり、2個の球(電気陰性度の大きい原子)が非常に小さな球(水素原子)を介してつながれば、直線状にならざるを得ないということです。

要は、「電気陰性度の大きい原子に結合した水素と、電気陰性度の大きい原子の間の静電的な引力」です。
電気陰性度の大きい原子というのは、事実上、F,O,Nと考えて良いでしょう。
電気陰性度の大きい原子と結合した水素上には正電荷(δ+)が生じます。また、電気陰性度の大きい原子上には負電荷(δー)が存在します。

水素が他の原子と違うのは、その価電子が1個しかないことです。つまり、他のイオンとは異なり、H+というのは原子核(通常は陽子)のみになります。他のイオンの場合には、内側にも電子格殻...続きを読む


人気Q&Aランキング