
No.2ベストアンサー
- 回答日時:
K^3の3つのベクトルの組があるので、その線形独立を言えば十分である。
すなわち a・(1,2,0)+b・(1,0,1)+c・(1,2,-1) = 0 ⇒ a = b = c = 0 を言えばよい。
あとは, a・(1,2,0)+b・(1,0,1)+c・(1,2,-1) = (a+b+c,2a+2c,b-c) = 0 を解けばよい。 連立方程式を解いて a = b = c = 0 が求められる。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 線形代数学の問題です! Vは 4 次元ベクトル空間とし線形変換 f ∶ V→ V のある基底 v1, 1 2022/06/12 09:25
- 数学 線型空間 V の基底 5 2022/04/03 05:55
- 数学 線形代数 部分空間 基底 次元 3 2023/01/24 03:40
- 数学 数学直線の方程式とベクトル方程式について 直線の方程式で 点(x1,y1)を通り、直線ax+by+c 1 2022/08/12 12:13
- 数学 線形代数の問題について教えて下さい。 行列A、行列B、ベクトルx 1.ABx=αxを満たす定数αを求 2 2023/06/12 10:51
- 物理学 ベクトルと座標系につきまして 1 2022/04/03 06:23
- 数学 数学(ベクトル) 単位ベクトルの一次結合で一般の空間ベクトルは表せる という式なのですがなぜ 「x1 3 2023/04/10 01:24
- 数学 固有ベクトルの縦書き 3 2022/12/19 23:48
- 数学 数学の問題で法線ベクトルについて 5 2022/11/13 12:45
- 数学 あのわかりません ai (i=1,2,...,m)を行ベクトルとする m x n 行列Aを行基本変形 3 2022/08/13 17:49
おすすめ情報
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
n次元ベクトルの外積の定義
-
微積分の記号δ、d、Δ、∂の違い
-
「ノルム、絶対値、長さ」の違...
-
行列とベクトルの表記の仕方に...
-
2つに直交する単位ベクトル
-
平面の交線の方程式
-
「任意」ってどういう意味?
-
一次独立だけど、基底にならな...
-
なぜ2乗するのか
-
座標系の奥(手前)方向の書き方
-
行列式が1とはどういう意味です...
-
ベクトルの大きさの書き方が||x↑||
-
複素数の絶対値の性質について
-
縦ベクトルと横ベクトルの違い...
-
零ベクトル
-
一本のベクトルに直交するベク...
-
2次元における外積について
-
ナブラ ラプラシアン
-
Aはn次正方行列とする。零行列...
-
高校教科書のベクトル表記について
おすすめ情報