どうして∬dxdy=∬drdθかけるrなのでしょうか
なぜrをかけるのかわかりません どうやら行列をつかったりする必要があるらしいのですがちょっとわかりずらいです  わかりやすく教えてもらえないでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

■各座標系の面積素(微小な面積を表す成分要素)dSがどう表されるかを考えて見てください。


直交XY座標では微小な面積素dS=dxdyで表されます。
横幅dx,高さdyの長方形の面積はその積dxdyで表されるので
dS=dxdy
ということです。
一方、極座標系では
半径r方向の微小な長さの幅dr,偏角θ方向(円弧方向)の微小な長さはrdθで表されます。従って極座標(r,θ)における面積素dSの微小な面積は
dS=(dr)×(rdθ)=rdrdθ
となります。
なので
∫dS=∬dxdy=∬rdrdθ
となるのです。

●数式で扱う場合はヤコビ行列を使って座標変換ができます。
http://ja.wikipedia.org/wiki/%E9%96%A2%E6%95%B0% …
この中の円座標の所が二次元の極座標のヤコビアン|J|の計算で
|J|=rが出てきますのでこれを使って変数変換
dxdy=|J|drdθ=rdrdθ
をします。
実際の計算は
x=rcosθ,y=rsinθ
から
ヤコビ行列Jを求めて
J=
(∂x/∂r,∂x/∂θ)
(∂y/∂r,∂y/∂θ)
=
(cosθ,-rsinθ)
(sinθ,rcosθ)
これからヤコビアン|J|を求めれば
|J|=
|cosθ,-rsinθ|
|sinθ, rcosθ|
=r(cos^2θ+sin^2θ)=r
となりますので機械的に
dxdy=|J|drdθ=rdrdθ
と変数変換すればいいことになります。

■で考えるか、●で考えるかは自由です。

直感的には面積素で考える■の方が覚えやすいかと思います。
XY座標から極座標への変換ではなく、もっと複雑な重積分(二変数、三変数の多重積分など)の変数変換では、ヤコビアンを使った方が間違いないでしょう。
    • good
    • 0
この回答へのお礼

わかりやすい説明ありがとうございました! 参考にさせていただきます^^

お礼日時:2009/05/20 17:00

このQ&Aに関連する人気のQ&A

円座」に関するQ&A: 痔のまま出産って?

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング