プロが教えるわが家の防犯対策術!

度々すいません^^;
不等式|x+1|+|x-2|<5はどうやって解くのでしょうか?
過去の質問で場合分けする、というのをみたんですけど良く分かりません。
絶対値が一つだったら分かるんですが…場合分け^^;
2個になるとどうとけば良いのでしょう?

教えて!goo グレード

A 回答 (2件)

|x+1|と|x-2|を別々に考えます。



|x+1|は、
 x<-1のとき、-(x+1),
 x≧-1のとき、(x+1)


|x-2|は、
 x<2のとき、-(x-2)
 x≧2のとき、(x-2)


したがって、
(1) x<-1のとき
 |x+1|+|x-2|<5は、
 -(x+1)+{-(x-2)}<5
  -x-1-x+2<5
       -2x<4
        x>-2
 ここで、前提がx<-1の場合であることから、-2<x<-1 …(A)


(2)-1≦x≦2のとき
 |x+1|+|x-2|<5は、
 (x+1)+{-(x-2)}<5
     x+1-x+2<5
        3<5
 これは、常に成り立つが、
 前提が-1≦x≦2の場合であることから、-1≦x≦2 …(B)


(3)x>2のとき
 |x+1|+|x-2|<5は、
 (x+1)+(x-2)<5
   x+1+x-2<5
      2x<6
      x<3
 ここで、前提がx>2の場合であることから、2<x<3 …(C)


(A),(B),(C)をまとめると、この不等式の答え、
すなわち、-2<x<3が求められます。
    • good
    • 38
この回答へのお礼

お陰で理解しながら解けました!
ありがとうございました!

お礼日時:2009/07/05 22:14

>2個になるとどうとけば良いのでしょう?



必要な分だけ場合分けして下さい。
    • good
    • 8

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

教えて!goo グレード

このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング