「みんな教えて! 選手権!!」開催のお知らせ

xy平面上の4点(1,1)、(-1,1)、(-1,-1)、(1,-1)を頂点とする正方形が囲む領域(境界線を含む)をDとする。
2次関数f(x)=(x-a)^2+b(a、bは定数)に対して、条件『放物線y=f(x)と領域Dが共有点をもつ』を考える。
(1)aを固定したとき、上の条件が成立するようなbの値の範囲を、aの値で場合分けし、aで表せ。
(2)上の条件を満たす点(a,b)が存在する範囲をab平面に図示せよ。

答え
添付ファイル一番上の(1)とグラフ部分

考え方、途中式教えて下さい!

「数学II」の質問画像

A 回答 (2件)

こんにちわ。


ざっくりした感じ(とはいえ長いです)ですが、以下に。^^

・まず、bは 2次関数:y= f(x)の最小値として与えられるので、この値が 1よりも大きいと共有点は存在しません。
よって、aのどの場合分けにも共通に b≦ 1という条件がつきます。
ある意味、これは「大前提」のようなものです。

・aは 2次関数の軸を表していることを考えれば、aの場合分けとしては大きく 2つあって
[i] 軸が -1≦ x≦ 1の外にあるとき
[ii] 軸が -1≦ x≦ 1の内にあるとき

となります。それぞれの場合はさらに細かく 2つずつに場合分けされていきます。

ところで、この正方形と共有点をもつためには、
必ず「境界線=正方形の辺」と交わらなければなりません。
この条件を式で表すことで、aと bの関係式が得られます。

・[i] 軸が外にあるとき
いま軸が正方形の右側にあるときを考えます。
すなわち、a> 1のときです。
境界線の「またぎ方」は 2とおりあります。
・「よこ」からまたぐか
・「した」からまたぐか

・「よこ」からまたぐとき
f(1)の値が -1から 1の間にあればよいことになります。

・「した」からまたぐとき
少し言い換えれば、y= -1の線をまたいでくればよい(ただし、-1≦ x≦ 1の範囲で)
ということになります。
x= 1のときは y= -1よりも下、 x= -1のときは y= -1よりも上になっていればいいことがわかります。
これは、f(1)≦ 1かつ f(-1)≧ -1と言い換えることができます。

「よこ」「した」を組み合わせると、答えの不等式にたどりつきます。

同様にして、左側(a< -1)のときも考えることができます。


・[ii] 軸が内にあるとき
y= f(x)のグラフを上からずーっと下げていきます。
まず、-1≦ b≦ 1であれば、必ず共有点をもちます。

つぎに、b≦ -1となったときです。
このときは、[i]のときと同様「した」からまたぐことになります。
ただし、少し考えるポイントが変わります。
軸の位置では y= -1より下、遠いほうの境界(x= -1 or x= 1)では y= -1より上になっていればよいです。
「遠いほうの境界」は aの値によって変わります。
よって、ここで -1≦ a≦ 0、0< a≦ 1という場合分けが出てきます。

式としては、以下のようになります。
f(a)≦ -1(これは b≦ -1)かつ f(1)≧ -1(-1≦ a≦ 0のとき)
f(a)≦ -1(これは b≦ -1)かつ f(-1)≧ -1(0< a≦ 1のとき)


これはは考え方なので、ここから場合分けをきちんと書いて整理する必要があります。
簡単なイメージ図もつけておきます。
(自分で図は描いてみてくださいね。)
「数学II」の回答画像2
    • good
    • 0
この回答へのお礼

細かく教えて下さりありがとうございます。
図もあってわかりやすかったです。

お礼日時:2010/12/22 18:35

>考え方、途中式教えて下さい!



正方形と放物線が共有点を持てばいいんだから、放物線は下に凸であり、正方形は対角線を意識して、軸の位置を考えればいいだけ。

(1) a≧1の時 点(1、1)を通るか、点(-1、-1)を通る条件を求める
(2) 0≦a≦1の時 b≦1か、点(-1、-1)を通る条件を求める
(3) -1≦a≦0の時 b≦1か、点(1、1)を通る条件を求める
(4) a≦-1の時 点(1、-1)を通るか、点(-1、-1)を通る条件を求める

別解として、ちょつと計算が面倒だが、放物線と4つの線分が交点をもつという方程式に還元する方法もあるが、上の図形から考える方法の方が簡単。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


おすすめ情報