いろいろなホームページを見ても概要がつかめません。
概要を教えて下さい。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

a-kuma さん書かれているように,


「イオンが移動することによって電気が流れること」
がイオン伝導です.

電流が流れるためには,電荷を持った粒子が移動しないといけません.
通常の金属や半導体では電流を運ぶもの(キャリア)は
電子またはホールです.
電子またはホールは,その物質全体に広がっています.
例えば,アルカリ金属の一番外側の電子が原子核の束縛を離れて
結晶全体に広がっている(自由電子),というわけです.
電子またはホールの平均自由行程は原子間距離よりずっと長いのが普通です.

これに対して,イオン伝導は電流を運ぶものがイオンです
例えば,典型的イオン結晶であるハロゲン化アルカリの電気伝導は
イオン伝導によっています.
ハロゲン化アルカリでは,アルカリ金属の電子はハロゲンの方に強く
引きつけられていて,自由電子にはなれません.
イオン伝導に関与するイオンは局在していて,
ときどき電場の方向に飛び移って動くとされています.
これをホッピング機構と言っています.
ときどき飛び移るだけですから,移動度(mobility)は,
当然ながら電子(あるいはホール)の伝導の場合に比べて非常に小さくなっています.
磁場を印加してもホール効果は観測されません.

他に,電解質溶液や溶融塩などの伝導もイオン伝導ですが,
機構はホッピングではありません.

固体でかなり大きなイオン伝導を示すものがあって,
固体イオニクス,あるいは超イオン導電体,と呼ばれています.
超イオン伝導体という呼び方もありますが,超伝導体と紛らわしいので,
超イオン導電体と言う方が多いようです.
    • good
    • 1

以下の参考URLサイトは参考になりますでしょうか?


「東京農工大:大野研究室」
このページで、
http://www.tuat.ac.jp/~ohno/lab/labc-hyb.htm
(新規な高分子イオン伝導体の開発: PEO/塩ハイブリッド)
http://www.tuat.ac.jp/~ohno/lab/labc-ani.htm
(ポリマー中の高速アニオン輸送)

ご参考まで。

参考URL:http://www.tuat.ac.jp/~ohno/lab/labintro.html
    • good
    • 0

> いろいろなホームページを見ても概要がつかめません。



参考URLに示したところも、見たページの中に入っているでしょうか?

そこに書いてあるように、「イオンが移動することによって
電気が流れること」をイオン伝導と言います。


それ以外に電気が流れるケースは、例えば、鉄に電気を流すときを
考えてください。自由電子が陰極に引き付けれれることで流れます。

参考URL:http://lib1.nippon-foundation.or.jp/1996/0448/co …
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qイオン伝導性について

イオン伝導性について調べているのですが、掲載されているのが難しく、理解に困っています。
『イオン伝導性』のことを教えてください

Aベストアンサー

イオンは電気を帯びている(つまり帯電している)物質のことで、例えば食塩(塩化ナトリウム)を水に溶かすと
 NaCl → Na+ + Cl-
と水和してそれぞれ
Na+ナトリウムイオン(+の電気を帯びている)
Cl-塩化物イオン (-の電気を帯びている)
と呼びます。

伝導性は「伝え導く性質」です。

つまりイオンが伝わる性質ってことです。
電池がわかりやすい例だと思います。
参考URL載せました。
溶液の中ではイオンは自由に動き回れます。
またイオンは電気を帯びているので、イオンが動くことによって、電気が銅線を伝わるのと同じように、電気が溶液中で流れるわけです(語弊があるかもしれませんが)

イオン伝導性と電気伝導性の違いは、電子自身が動き回る電気伝導性に対して、電気を帯びている(電子を持っている)イオンが溶液中を動き回るということです。

電気伝導度は金属や半導体を扱うときに使いますが、イオン伝導度は金属でない有機物(DNAや高分子ポリマーなど)で使われることが多いと思います。
固体でも「イオン伝導性」という言葉が使われておりますが、これも基本の原理は上に書いたのと変わらないです。

 

参考URL:http://www.max.hi-ho.ne.jp/lylle/denchi1.html

イオンは電気を帯びている(つまり帯電している)物質のことで、例えば食塩(塩化ナトリウム)を水に溶かすと
 NaCl → Na+ + Cl-
と水和してそれぞれ
Na+ナトリウムイオン(+の電気を帯びている)
Cl-塩化物イオン (-の電気を帯びている)
と呼びます。

伝導性は「伝え導く性質」です。

つまりイオンが伝わる性質ってことです。
電池がわかりやすい例だと思います。
参考URL載せました。
溶液の中ではイオンは自由に動き回れます。
またイオンは電気を帯びているので、イオンが動くこ...続きを読む

Qホッピング伝導とはどんなものですか?

電界をかけてその電荷が移動する「電気伝導特性」には物質ごとに色々とあると思います。金属中や半導体中の電気伝導特性は大学の固体物理等でなじみが深いのですが、ホッピング伝導とは具体的にどんなものをさすのかちょっとわからないので教えてください。

分かっているのは「連続ではない状態を電荷がホッピングしながら伝導していく」といった事くらいで、もっとちゃんと知りたいと思っています。特に

・ホッピング伝導のメカニズムは何か。
・そのメカニズムからホッピング伝導を数式化するとどうなるか。
・ホッピング伝導と言われる物質は具体的にどんなものがあるのか。
・この物質はホッピング伝導である。と言い切るには実験的にどのような電気伝導特性を示せばいいのか。

以上四点を知りたいと思っているのですが、ホームページ検索では表層しか分かりませんし、手元の書籍にはヒントは見当たりませんでした。

もしも良い書籍、およびホームページをご存知でしたら教えていただけるだけでも嬉しいのでよろしくお願いいたします。

Aベストアンサー

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化してあったのは,確か電気学会で出している「誘電体現象論」です。
半導体物理の本(SzeのPhysics of Semiconductor Devicesなど)にも出ていると思います。
-------------
PF型の伝導か否かは,測定した電流-電圧特性をPFプロットし,そのグラフの勾配が
所定の値になっているかどうかで判別できたと思います。
今,手元に本がないので正確なことが記述できません。本を見ていただくのが一番と思います。
または,WEB検索で「プール フレンケル」,「Poole Frenkel」と入力すれば,
関連のWEBサイトが見つかると思います。

以上

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化して...続きを読む

Q固体イオン伝導体のイオン導電率と活性化エネルギー

固体イオン伝導体のイオン導電率と活性化エネルギーの関係について教えてください。

固体イオン伝導の活性化エネルギーというのはイオンがホッピングするときの障壁に相当するエネルギーと理解していますが、同じイオン伝導モデルを有していてキャリアの数も同等である材料の場合は、活性化エネルギーが低い物質は必ず高いイオン導電率を示すのでしょうか?

学術論文等を読んでいると、しばしばこれらの関係が逆になっているケースを見かけます。
つまりアレニウスプロットにて、ある材料Aのプロットの傾きが材料Bよりも大きいにも拘らず、導電率の値がBよりも高くなっているような図を見かけます。
同じイオン伝導モデルを有していると考えると、これらの関係に矛盾を感じます。

回答していただきたいのは、

1) 活性化エネルギーが低い物質は必ず高いイオン導電率を示すものなのか?
2) 1)の関係が必ず成り立つとは限らないのならば、その理由として考えられることは何か?
3) セリア系の酸素イオン伝導体において「キャリアの数=酸素空孔の数」と考えても良いのか?

の3点です。

知識不足からトンチンカンな質問になっているかも知れませんが、ご回答をよろしくお願いいたします。

固体イオン伝導体のイオン導電率と活性化エネルギーの関係について教えてください。

固体イオン伝導の活性化エネルギーというのはイオンがホッピングするときの障壁に相当するエネルギーと理解していますが、同じイオン伝導モデルを有していてキャリアの数も同等である材料の場合は、活性化エネルギーが低い物質は必ず高いイオン導電率を示すのでしょうか?

学術論文等を読んでいると、しばしばこれらの関係が逆になっているケースを見かけます。
つまりアレニウスプロットにて、ある材料Aのプロットの傾きが材...続きを読む

Aベストアンサー

現象論的には,活性化エネルギーが小さいということは電気伝導度の温度依存性が小さいということを言い換えているだけ.ただそれだけです.電導度の絶対値については何も言えません.

酸素空孔数をキャリア数と近似できる場合もあるでしょうし,そうでない場合もあるでしょう.材料やドープの方法,焼結状態,結晶程度,その他によって,どうなるかは変化しうるでしょう.

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q人の知覚にとって「紫色」とは?

以前、このSiteで教えてもらったのですが、人の視細胞(少なくとも中心は)が、RGBに対応する3種類の錐体からなるそうです。

しかし、もし短波長側に対応した錐体が「青」に対応していると仮定すると、400nm~450nmまでの光は「青」にしか見えず、波長が紫外領域端400nmに近づくにつれてどんどん「暗く」なるだけのように思えました。長波長側も同様です。

しかし、マンセルの色立体や色環図などでお馴染みのように、色相は、赤~赤紫~紫~青紫~青と、切れ目なく連続しています。

あるSiteでは、眼の3錐体を「赤、緑、紫」と説明していましたがこれもよく考えると合理的とは思えません。

■人の知覚にとって「紫色」とは何なんでしょうか?眼の3錐体モデルで説明してください。

■レーザのような単色光と、広帯域に広がる連続スペクトラムの場合で各々説明してもらうと助かります。「その辺が鍵かな」とチト思ってますんで...。

Aベストアンサー

三種類の錐体がRGBに対応する、とは言っても、それぞれワイドスペクトルの感度分布を持っています。
それぞれの錐体の最大感度100%としたときに、1%以上の感度を持つ幅を見ますと、だいたいの値ですが
R: 700nm~400nm (peak=580nmあたり)
G: 660nm~400nm (peak=530nmあたり)
B: 520nm~400nm (peak=440nmあたり)
です。特にRは可視光の全波長に感度があるんですね。またGは空間解像度が高いのが特徴です。Bの特徴は短波長において選択的に感度が高いことです。Bと比べると、RとGは互いによく似た感度分布を持っているとすら言えます。射撃競技では黄色いサングラスをよく使いますが、これは青い光をカットしてBの反応を抑えるので、明るさを犠牲にせずに解像度の高いGがよく働くようにできるからだと思われます。

単波長の光fを見た場合には、その波長における感度R(f), G(f), B(f)に応じた信号が発生します。この信号がさらに脳内で黄-青(Y/B)、赤-緑(R/G)、明るさ(L)、という成分に換算されます。この換算結果が色覚です。このため、同じ光に対して黄と青は同時に反応せず、赤と緑も同時には反応しない。

単波長光源の色の見え方について、反対色のペア青-黄、赤-緑をそれぞれ対比させたとき、どちらが優位になるかを調べると、
青:400-500nm、黄:500-700nm
赤:400-480nm、580-700nm、緑:480-580nm
つまり、赤は長波長の「ホントの赤」以外に、短波長においても緑より優位になることが知られています。しかし短波長においては同時に青も見えているので純粋の赤を見ることはできません。これが紫です。
赤でも緑でもない、という状態は480nm, 580nmの2カ所にあり、480nmでは純粋の青、580nmでは純粋の黄色が見えることになります。一方、青でも黄色でもない、という状態は500nmで、この時純粋の緑が見える。ところが長波長の光に於いても黄の成分が消えきらないために、純粋の赤というのはどうもはっきりしない。
またこの数字と、上記の錐体の感度分布を比べると、たとえばRの感度が最大である580nmにおいて赤が一番強く見えるわけではなく、むしろ緑でも赤でもなく黄色に見える。つまり飽くまでもR(f), G(f), B(f)ではなくY/B, R/G, Lの方で色を感じているんだということです。

さて、連続スペクトルs(f)を見たのなら、R(f), G(f), B(f)の代わりに∫R(f)s(f)df, ∫G(f)s(f)df, ∫B(f)s(f)dfが発生し、これがY/B, R/G, Lに変換されることになります。各積分の値だけが問題なので、同じ答が出るスペクトルsは何種類でも存在する。

かくて、結論といたしましては、紫色の単色光や、青と赤が混ざった混合光、一般に∫R(f)s(f)df, ∫G(f)s(f)df, ∫B(f)sがこれらと同じであるようなスペクトルの光はいずれも紫に見える。Bと、そして若干のRが反応する状態を紫と感じるわけです。

余談ながら:カラーディスプレイや写真や印刷が出すスペクトルは、現実の物体の発する光のスペクトルとは似ても似つかない。それにも関わらずおなじ色に見えてしまうのは、ヒトの目の仕組みのせいです。SF映画で宇宙人がテレビ見てたりしますけど、R-G-Bの錐体で色を見ているのではない生物(たとえば蝶の目は5原色)がカラーモニターを見ても、奇妙奇天烈な色に見えるはずですね。なお、ヒトでも4種類目の錐体を持つ個体が少数ながら居ると言われております。

三種類の錐体がRGBに対応する、とは言っても、それぞれワイドスペクトルの感度分布を持っています。
それぞれの錐体の最大感度100%としたときに、1%以上の感度を持つ幅を見ますと、だいたいの値ですが
R: 700nm~400nm (peak=580nmあたり)
G: 660nm~400nm (peak=530nmあたり)
B: 520nm~400nm (peak=440nmあたり)
です。特にRは可視光の全波長に感度があるんですね。またGは空間解像度が高いのが特徴です。Bの特徴は短波長において選択的に感度が高いことです。Bと比べると、RとGは互いによく似た感度分...続きを読む

Q“ in situ ” とはどういう意味ですか

科学の雑誌等で、“ in situ ” という言葉を見ますが、これはどういう意味でしょうか。
辞書では、「本来の場所で」、「もとの位置に」などと意味が書いてありますが、その訳語を入れても意味が通りません。
分かりやすく意味を教えていただけないでしょうか。

Aベストアンサー

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対してプローブをhybridizationすることをさします。
これによって、染色体上で特定のDNA配列を検出したり、組織標本上で特定のRNAを発現する細胞を検出したりできます。生体内の局在を保った状態でターゲットを検出するということです。

化学反応、酵素反応などでは、溶液中の反応のように、すべての役者が自由に動き回れるような系ではなく、役者のうちどれかがマトリックスに固着していて、その表面だけで反応がおこるようなケースが思い浮かびます。

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対...続きを読む

Q金属の化合物の導電性は何で決まる?

初めまして。電気系エンジニアを生業としている者です。
世の中にはいろんな金属の化合物(例えば、銅だと、酸化銅、硫化銅、塩化銅など)が
存在しますが、これらが導電性を有するかどうかというのは、何で決まってくるので
しょうか?
またそれは、簡単に判断が付くのでしょうか?(例えば、周期表を見れば判るとか)
ご存知の方、教えて下さい。よろしくお願い致します。

Aベストアンサー

結論から言うと、#3の回答者さんのおっしゃる、調べてみないと分からないです。
まず、イオン性結晶の物質は、結晶内部で+イオン状態の原子と-イオン状態の原子が存在し、外殻電子が-イオンに局在するので自由に動ける電子が無くなり、絶縁性が高い場合が多いです。結合の強さとは直接は関係有りません。しかし、CuO以外にもCrO2、Fe3O4など例外も多く。また、理想結晶なら絶縁性でも、酸素欠陥などが有るとその分が伝導電子に寄与するため、NiOなどはかなり導電性が出ます。#5の回答に有るようなイオン伝導の可能性も出てきますし。
質問者さんの場合など、材料表面の自然に生成した化合物のようなので、理想的な化合物特性からはかなりすれている可能性も高いです。
導電性の物理的なメカニズムは#5の回答どおりなのですが、バンド構造自体が導電性以上に調べるのが難しい情報(計算でも出ますが、信頼性が低いのと、絶対零度での結果になります)ですから、実用材料評価には使いにくいですね。
従って、現実的な判断方法は、予想される生成物を考えて、材料系のハンドブックや辞典類などで導電性を調べることでしょうね。

結論から言うと、#3の回答者さんのおっしゃる、調べてみないと分からないです。
まず、イオン性結晶の物質は、結晶内部で+イオン状態の原子と-イオン状態の原子が存在し、外殻電子が-イオンに局在するので自由に動ける電子が無くなり、絶縁性が高い場合が多いです。結合の強さとは直接は関係有りません。しかし、CuO以外にもCrO2、Fe3O4など例外も多く。また、理想結晶なら絶縁性でも、酸素欠陥などが有るとその分が伝導電子に寄与するため、NiOなどはかなり導電性が出ます。#5の回答に有るようなイオン伝導の...続きを読む

Q誘電率について

「高い誘電率を有するが電気的には絶縁体(プラスチック・セラミック・油)」とある本に書かれていたのですが、高い誘電率の意味がまったくわかりません。

誘電率とはどういうものなのでしょうか?是非教えてください。

導体、半導体、絶縁体についてもあまりくわしくないようなレベルです。よろしくお願いします。

Aベストアンサー

>誘電体とはどういうもので、普段の生活でどういう風に使われている等

そうですねぇ。極端なことを言いますと、どんな物質でも大なり小なり電子が引っ張られる効果はあるのでその意味では、電気を通さない物質はみんな誘電体という見方もできます。

ただ一般に「誘電体」というと特にその効果が大きい物質に対して言うことが多いですね。
誘電体で身近な物というのは結構難しくて大抵は部品として何かの中に組み込まれています。


・電子ライター(けずって火花を出すのではなく、カチッという音と共にスパークが飛ぶやつ)
 ->誘電体を打撃すると揺さぶられて高電圧が発生する

・コンデンサー...ありとあらゆる電気製品に含まれている部品で電気を蓄えるもの

・超音波モーター...オートフォーカスカメラでレンズを駆動してピントを合わせるモーター

・メガネや望遠鏡、双眼鏡...レンズの表面にコーティングして光の反射を防止する為に使う

などなど上記はほんの一例ですが実に色んな用途に使われています。

では。

Q電流が流れる条件

電流が流れるための条件って何ですか?

Aベストアンサー

電荷の運び手が存在することでしょうか。
固体中なら、金属のように自由電子が存在すること。
溶液中なら、電気分解で使いますが、電解液、すなわちイオンが存在すること。

金属みたいに完全に自由電子になっていない半導体や有機物の場合でも、熱励起や光励起で生じた電荷の運び手が電気をある程度伝えてくれます。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング