3次方程式 x^3-3x+1=0 の1つの解を α とするとき,

1/(α^2-α-2) - 1/(α^2+α-2) + 1/(α^2-2α+1) - 1/(α^2+2α+1) = 2

となるそうなのですが、どう計算すればよいのでしょうか。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

式の順番を少々入れ替えて、



[1/(α^2-α-2)- 1/(α^2+2α+1)]+[1/(α^2-2α+1)-1/(α^2+α-2)]
とすると、

前半部分

1/(α^2-α-2)- 1/(α^2+2α+1)

=1/(α-2)(α+1)-1/(α+1)^2

=[(α+1)-(α-2)]/(α-2)(α+1)^2

=3/(α^3-3α-2)


同様に、後半部分

1/(α^2-2α+1)-1/(α^2+α-2)

=1/(α-1)^2-1/(α+2)(α-1)

=[(α+2)-(α+1)]/(α+2)(α-1)^2

=3/(α^3-3α+2)


よって
1/(α^2-α-2) - 1/(α^2+α-2) + 1/(α^2-2α+1) - 1/(α^2+2α+1)

=3/(α^3-3α-2)+3/(α^3-3α+2)

α^3-3α+1=0だから・・・
    • good
    • 1
この回答へのお礼

ありがとうございます。

計算の順序がコツなのですね。

お礼日時:2011/04/13 00:29

実際に通分して長々と計算する。


分子=6(α^3-3α)となるが、α^3-3α+1=0なので括弧の中は-1となる。よって分子=-6
同様に分母も展開して計算すれば-3になるんじゃないの?それくらい自分でやれ!簡単な賢い解法を考えるのはその後だ。
    • good
    • 0
この回答へのお礼

ありがとうございます。

うまい計算方法があると思っていました。

別の人に聞いたところ、互除法を使うそうです。

お礼日時:2011/04/13 00:29

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q連立一次方程式の解全体にはどんな種類があるのでしょうか?

連立一次方程式の解全体にはどんな種類があるのでしょうか?


画像に問題が添付してあります。


一つ目の
{x =C1 より (x) (C1)
{ y =C2 (y) = (C2)
{ z =C3 (z) (C3) 」

それと後3つあるみたいです。 わかる方いましたらご教授お願いします!

Aベストアンサー

3元の連立方程式に関する問いが難しければ,まず2元で考えてみましょう。

2つの平面の共通部分は
A.平面(2つの平面が一致しているとき)
B.空集合(2つの平面が平行なとき)
C.直線(それ以外のとき)
ですね。

それでは3つの平面の共通部分はどうなるかと言えば,2つの平面の共通部分ともう一つの平面の共通部分です。
A.2つの平面の共通部分が平面のときからは,
A1.平面
A2.空集合
A3.直線
が出てきて
B.2つの平面の共通部分が空集合のときからは
B1.空集合
だけですね。
C.2つの平面の共通部分が直線のときからは
C1.空集合(直線と平面が平行なとき)
C2.点(それ以外のとき)

結局,
1.平面
2.空集合
3.直線
4.点
になることが分かりました。

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Q2次方程式の解の種類

2つの2次方程式9x2+6ax+4=0…(1),x2+2ax+3a=0…(2)が次の条件を満たすように定数aの値の範囲を定めよ。
(1)少なくとも一方が虚数解をもつ

(2)(1)のみが虚数解をもつ

問題集の解答には
(1)の場合は「D1<0かつD2<0で解きなさい」と書いてあります。
(2)の場合は「D1<0またはD2<0で解きなさい」と書いてあります。
皆さんはこれを覚えて解くのでしょうか?
皆様のお力をお貸しください。
よろしくお願いします。

Aベストアンサー

こんばんわ。

>皆さんはこれを覚えて解くのでしょうか?
この「解答」を丸々覚えても、ほとんど意味はないと思います。

いまの問題は、「虚数解をもつ」と「虚数解をもたない=実数解をもつ」の 2つがありますね。
一つずつ、言い換えていくことを考えます。
★(1)少なくとも一方が虚数解をもつ
少なくとも一方ということは、
・(1)だけが虚数解をもつ((2)は実数解をもつ)
・(2)だけが虚数解をもつ((1)は実数解をもつ)
・(1)も(2)も虚数解をもつ

という場合分けができます。

ところが、ここには現れていない組み合わせがありますね。
それは、「(1)も(2)も実数解をもつ」という組み合わせです。
これは「少なくとも一方が虚数解をもつ」ということの否定になっています。

解き方は 2とおりあります。
・一つ目は、上に挙げた 3つの組み合わせを満たす範囲をそれぞれ求めて、
その範囲を足し合わせる方法です。
ただし、一番目と二番目の範囲を足し合わせると、三番目の範囲はそこに含まれることになります。

・もう一つは、「(1)も(2)も実数解を持つ」という範囲を求めて、全体(実数全体)からその範囲を除く方法です。


★(2)(1)のみが虚数解をもつ
これは、
・(1)だけが虚数解をもつ((2)は実数解をもつ)

ということですから、この両方を満たす範囲を素直に求めます。

範囲を求めるところでは、数直線を用いて考えると考えやすいと思います。


と考えると、問題集の解答は間違っていませんか?
D1、D2はおそらく判別式のことだと思いますので、
(1)の場合は、D1< 0 または D2< 0 で解きなさい。
(2)の場合は、D1< 0 かつ D2≧ 0で解きなさい。

ではないでしょうか。

こんばんわ。

>皆さんはこれを覚えて解くのでしょうか?
この「解答」を丸々覚えても、ほとんど意味はないと思います。

いまの問題は、「虚数解をもつ」と「虚数解をもたない=実数解をもつ」の 2つがありますね。
一つずつ、言い換えていくことを考えます。
★(1)少なくとも一方が虚数解をもつ
少なくとも一方ということは、
・(1)だけが虚数解をもつ((2)は実数解をもつ)
・(2)だけが虚数解をもつ((1)は実数解をもつ)
・(1)も(2)も虚数解をもつ

という場合分けができます。

ところが、ここには現れていな...続きを読む

Q関数f(x)=2x^3+3px^+3px-3p^/2は、x=αで極大値f(α)を、x=βで極小値f(β)をとる。

関数f(x)=2x^3+3px^+3px-3p^/2は、x=αで極大値f(α)を、x=βで極小値f(β)をとる。ただし、pは実数とする。

という問題で、

1)pのとりうる値の範囲を求めよ。 A. p<0,2<p
2)f(α)+f(β)をpを用いて表せ。 A.f(α)+f(β)=p^3-6p^

まではできました。答えもあっているはずです。ですが、

3)2点(α,f(α)),(β,f(β))を結ぶ線分の中点の軌跡を求めよ。

という問題がどうしても解けません。
どなたかご教授下さい。お願いします。

Aベストアンサー

中点の軌跡の座標を (X , Y) とすると、
X = ( α + β ) / 2
Y = ( f(α) + f(β) ) / 2

α + β = - p
f(α) + f(β) = 問 2)より、

上 2 式から、p を消去すれば、軌跡の方程式が求まります。
また、問 1) の p の範囲から、x の範囲も考慮する必要があります。

Q中学1年数学の方程式文章題の種類

中学数学のプリントつくりをしているのですが、来年の改定に向けて
文章題のパターンの変化はあるでしょうか?

例えば当方の地域では啓林館が使われています。
この場合、方程式の文章題は中1数学の場合「代金」「速さ」「過不足」に関する問題
がメインです。「割合」「位の入れかえ」「連続する整数」などは出てきません。
「割合」は啓林館の場合中2から出てきます。
噂では「食塩水に関する問題も復活するのでは」などとも聞きます。

生徒が混乱するので教科書以外のパターンはあまり問題を作りたくないと考えております。
是非そのあたりをお教えくださればと思います。
また東京書籍版の場合はどうなのかも詳しい方がいらっしゃれば投稿お待ちしております。

Aベストアンサー

問題集に付いている移行措置用の補助教材を見た時に、
比を使った方程式の文章問題が載っていたような気がします。

今後はx : 2 = 4 : 3のような比の方程式の解法を中学1年生で習うようになるので、
この比の方程式に対応した文章問題が出るのは自然かもしれません。

Qx^4-4x^3+5x^2-4x+1=0でx+1/x=tとする時、 tで表すと?

宜しくお願い致します。

4次方程式x^4-4x^3+5x^2-4x+1=0…(*)に於いてx+1/x=tとする時、 
(*)をtで表すと?
という問題なのですがどのようになるんでしょうか?

Aベストアンサー

4次方程式(あるいはそれ以上の偶数次の方程式)で、係数の並びが

a*x^4 + b*x^3 + c*x^2 + b*x + a = 0 ‥ (1)

のような並びになっているもの(係数の並びから俗に回文的に
『シンブンシ方程式』とも呼ばれることも)ではいつもすることですが
中央の x の次数、つまり x^2 で全体を割ります。
そうすると (1) は

a*x^2 + b*x + c + b/x + a/x^2 = 0 ‥ (2)

のように変形できます。
ここで頭と尻尾を組み合わせるように (2) を並び替えます。

(a*x^2 + a/x^2) + (b*x + b/x) + c = 0
a(x^2 + 1/x^2) + b(x + 1/x) + c = 0 ‥ (3)

更に、一般に (x^2 + 1/x^2) = (x + 1/x)^2 - 2 が成り立ちますから
これを (3) に代入すれば

a(x + 1/x)^2 + b(x + 1/x) + c - 2 = 0 ‥ (4)

ここで t = x + 1/x を (4) に代入すれば、t に関する
2次方程式に変形できます。

----------------------------------------------------------------

実際の出題では、恐らく

4次方程式 x^4 - 4x^3 + 5x^2 -4x + 1 = 0 …(*) に於いて

(a) x + 1/x = t とするとき、(*) を t で表せ。
(b) t に関する2次方程式を解け。
(c) 4次方程式 (*) に於ける解をすべて求めよ。

となっていると思います。

上の変形を参考にやってみて下さい。

4次方程式(あるいはそれ以上の偶数次の方程式)で、係数の並びが

a*x^4 + b*x^3 + c*x^2 + b*x + a = 0 ‥ (1)

のような並びになっているもの(係数の並びから俗に回文的に
『シンブンシ方程式』とも呼ばれることも)ではいつもすることですが
中央の x の次数、つまり x^2 で全体を割ります。
そうすると (1) は

a*x^2 + b*x + c + b/x + a/x^2 = 0 ‥ (2)

のように変形できます。
ここで頭と尻尾を組み合わせるように (2) を並び替えます。

(a*x^2 + a/x^2) + (b*x + b/x) + c = 0
a(x^2 ...続きを読む

Q2種類の文字が入った方程式

xはエックスです。

3/x = (3+2)/(x+y)
3(x+y) = 5x

どのように解いていけば、
3(x+y)=5x なるのでしょうか?

解説のご教授おねがいします。

Aベストアンサー

 右辺の(3+2)が5になるのはわかるニャ?

左辺の1/x、右辺の1/(x+y)をそれぞれ左右に移項しただけニャ。
左辺の1/xを右辺に移項する場合、【両辺にxをかけるから左辺はx/x=1に】右辺にはxをかけることになるニャ。
3/x=5/(x+y)両辺にxをかける
3=5x/(x+y)
右辺の1/(x+y)を左辺に移項する場合、【両辺に(x+y)をかけるから右辺は5x(x+y)/(x+y)=5xに】左辺には(x+y)をかけることになるニャ。
3=5x/(x+y)両辺に(x+y)をかける
3(x+y)=5x

 ちなみに慣れたら【 】は飛ばして良いニャ。また右辺と左辺を同時に計算するニャ。
3/x=(3+2)/(x+y)
3(x+y)=5x

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Q【数学】2次方程式どうしの足算、引算

私が使っている数学の参考書に
「2種類の方程式を足したりひいたりしてできる方程式の解は元の方程式の解であるとは限らない」
という旨の文章が載っているのですが、この文章が載っているということは方程式どうしの足算や引算ができるということですよね?

ですが、2つの2次方程式が足したりひいたりできるという考え方がいまいち理解できません。
たとえば、

2x^2-1=0…(1)

という2次方程式と

x^2-4=0…(2)

という2次方程式があるとします。

この2式は単純に足したりひいたりできるのでしょうか?

「連立方程式は2つの式の文字がどちらも一定であるという前提があって成り立つわけじゃないですか。でもこの場合はxがそれぞれまったく別の数字だから足したりひいたりするのは不可能なのでは」
というのが私の意見なのですが…(この場合は連立方程式とは関係がないのかもしれませんが)

以上が質問の内容です。
長くなってしまいごめんなさい。まとめると

文字が1種類の方程式どうしを単純に足したりひいたりできるのか?

ということです。

本当に初歩的な質問だとは思いますが回答していただけるとうれしいです。

私が使っている数学の参考書に
「2種類の方程式を足したりひいたりしてできる方程式の解は元の方程式の解であるとは限らない」
という旨の文章が載っているのですが、この文章が載っているということは方程式どうしの足算や引算ができるということですよね?

ですが、2つの2次方程式が足したりひいたりできるという考え方がいまいち理解できません。
たとえば、

2x^2-1=0…(1)

という2次方程式と

x^2-4=0…(2)

という2次方程式があるとします。

この2式は単純に足したりひいたりできるのでしょうか?

「連立...続きを読む

Aベストアンサー

連立方程式を加減法で解く際に、2つの式を縦に並べて足し算(または引き算)しますよね?
それが「2つの方程式を足したり引いたりする」ということです。

ですから、文字が1種類の方程式同士を足したり引いたりすることももちろんできます。
ただし、【連立方程式であることが条件】です。
質問者さんの言葉を使うならば、
「2つの式の文字がどちらも一定であるという前提」が成り立っている必要がある、ということです。


(1)と(2)が連立方程式である場合は、「(1)のxも(2)のxも同じ」はずです。
この場合は足したり引いたりすることは可能です。(解があるかどうかは別として)
しかし、(1)と(2)が連立方程式でない場合は、(1)のxと(2)のxは別物ですから、
足したり引いたりすることはできません。

Q3x^2-4x+2x^2+1の同類項をまとめなさいと言われたとき、 3x^2-4x+2x^2+1=(

3x^2-4x+2x^2+1の同類項をまとめなさいと言われたとき、
3x^2-4x+2x^2+1=(3+2)x^2-4x+1
=5x^2-4x+1
とすると思いますが、(3+2)x^2の括弧の中の3+2は3(個)+2(個)というような意味がある計算ではないから、この場合の3+2は意味のないただの数字計算ということになるのですか?

Aベストアンサー

x^2 が 3 コと 2 コあるので、同類項を整理したら、5 コの x^2 になったと言っているようです。


人気Q&Aランキング