プロが教える店舗&オフィスのセキュリティ対策術

球体を切った時の直径の求め方を教えてください。

例えば、直径10センチの球が有ったとします。
この場合真っ二つにしたら、その断面の円は当然10センチですよね。

では、1センチで切った場合,2センチで切った場合などの時
直径の求め方はどの様になるのでしょうか?

球体の大きさと、切る場所が任意の場合の求め方をご存じの方が
いらっしゃいましたら(出来るだけ分かりやすく)教えてください。

A 回答 (4件)

直径10センチの球面の方程式は


x^2+y^2+z^2=25
x=0の面(YZ座標平面)で切断した切断面で考えると境界線は
y^2+z^2=25
の円周になる。
この端y=-5からa(0≦a≦10(センチ))の距離のy=-5+a(センチ)の平面(切断面では直線)で切断したときの切断面の直径Dは、D=2z=2√(25-y^2)にy=-5+aを代入して求めることが出来る。

 D=2√{25-(-5+a)^2}=2√(10a-a^2)(センチ)

となります。aの範囲:a=0~10(センチ)。
    • good
    • 3
この回答へのお礼

細かな計算式を有り難うございます。

この式で、色々な球体に対応出来ます。
また困った時が有れば、その時も宜しくお願いいたします。

お礼日時:2011/05/13 15:31

三平方の定理を使うのが、なじみがあって飯野ではないでしょうか。

「球体を切った時の直径の求め方」の回答画像4
    • good
    • 6
この回答へのお礼

図で示して頂き有り難うございます。

このような図を見ると、学生時代を思い出します。

お礼日時:2011/05/13 15:32

そう。

そういう話です。
示した手順にしたがって、
質問氏自身に考えてほしかったが。
    • good
    • 1
この回答へのお礼

「質問氏自身に考えてほしかった」は理解出来ましたが、
現役を離れて時間が経った為細かなところに自信が有りませんでした。

また機会が有れば、宜しくお願いします。

お礼日時:2011/05/13 15:33

球の中心を通り


切断面に垂直な平面での
断面図を考えてみましょう。
円を直線で切ったときの
弦の長さを求める問題になります。
三平方の定理を使えばよいですね?
    • good
    • 0
この回答へのお礼

早速の回答有り難うございます。

その辺は何となく分かっているのですが、細かなところが分からなくなって・・・。
でも、考え方は理解出来ました。

お礼日時:2011/05/13 15:31

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


人気Q&Aランキング