No.2ベストアンサー
- 回答日時:
交点を求めなくても、答えを出す方法がありますが、とりあえず、ヒントのみ。
(x^2+y^2-2x-2y-11)+k(x^2+y^2+4x-4y-17)=0
という図形は、kをどのように選んでもある2点を通る図形をあらわします。
「どの2点を通る図形か」というのを考えてみてください。
とりあえず、k=-1を代入してみて、(1)の答えと比較してみると・・・。
分からなければ補足を。
分かりました!!
つまり(x^2+y^2-2x-2y-11)+k(x^2+y^2+4x-4y-17)=0に(0.0)を代入してkを求めて
もう一度kを上式に代入して式を求めるんですね。
自分で解いてみてちゃんと答えも合ってました。
回答ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある 2 2022/10/01 14:53
- 数学 放物線と円の接点についてです。96(1)の、[1]で重解だと接することがよくわかりません。 xの2次 4 2022/12/24 17:59
- 数学 写真(URL)の問題の(1)についてですが、 円c1は 2点を通ると書いてあることから、 2点の座標 5 2023/02/14 19:44
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 数学 線形代数の平面についての問題がわからないです 2 2022/08/08 15:23
- 中学校 OA=OB=OC=AB=AC=1、 ∠BOC=90°となる四面体OABCの 辺OA上に点DをOD:D 4 2022/10/11 10:07
- 数学 数学の問題で法線ベクトルについて 5 2022/11/13 12:45
- 数学 微分について教えてください 放物線y=x^2のx=1における微分係数を定義に従って求め、その点におけ 5 2023/04/16 15:38
- 数学 三角関数の問題です 3 2022/06/19 06:59
- 数学 この問題が分かりません! 右図の直線①②の式は、y=-x+4①、 y=3/4x+1② である。2つの 3 2022/05/04 22:29
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
秘密基地、どこに作った?
小さい頃、1度は誰もが作ったであろう秘密基地。 大人の今だからこそ言える、あなたの秘密基地の場所を教えてください!
-
これが怖いの自分だけ?というものありますか?
人によって怖いもの(恐怖症)ありませんか? 怖いものには、怖くなったきっかけやエピソードがあって聞いてみるとそんな感覚もあるのかと新しい発見があって面白いです。
-
2024年のうちにやっておきたいこと、ここで宣言しませんか?
2024年も残すところ50日を切りましたね。 ことしはどんな1年でしたか? 2024年のうちにやっておきたいこと、 よかったらここで宣言していってください!
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
円と直線の交点を通る円
数学
-
2円の交点を通る円の方程式
数学
-
2つの円の交点を通る直線の方程式
数学
-
-
4
男性が好きな人でオナニーする時の妄想を教えて下さい
風俗
-
5
実数x、yがx^2+y^2=1を満たすとき、2x−yのとりうる値の範囲を求めよという問題で、 2x−
大学受験
-
6
位置エネルギー U
物理学
-
7
硫酸イオンの式
化学
-
8
二つの円の交点を通る直線
数学
-
9
2階微分d^2y/dx^2を詳しく教えてください
数学
-
10
合成関数の微分を使う時と、使わず、普通に微分する場合で、どう見分けをつけたら良いのですか?
高校
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学 接点、交点について
-
重心と内心と外心と垂心の覚え...
-
2円の交点と原点を通る円
-
「共有点」と「交点」の違い。
-
数Bの漸化式の問題についての質...
-
楕円はいくつの点でひとつに決...
-
球体を切った時の直径の求め方
-
透視投影した図形の法線ベクト...
-
3つの円が1点で交わる条件に...
-
連立方程式 未知数より方程式の...
-
△ABCの重心をGとする。 このと...
-
数学でわからない問題があります
-
虚数は無理数の仲間でしたっけ?
-
ベクトルを用いないで平面の方...
-
球面上の3点と半径から球の中...
-
平面上において,4本だけが互い...
-
3次元における近似平面と点Pの...
-
ベクトルの問題です (早大...
-
円周上にA,B,C,Dが反時計回りに...
-
高校数学です!困ってます!
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
2円の交点と原点を通る円
-
平面の方程式、dが持つ意味?
-
球体を切った時の直径の求め方
-
数学 接点、交点について
-
複素解析の問題です。 一次分数...
-
虚数は無理数の仲間でしたっけ?
-
円と線で囲まれた部分の面積
-
重心と内心と外心と垂心の覚え...
-
楕円はいくつの点でひとつに決...
-
数2 この問題の解き方が意味が...
-
連立方程式 未知数より方程式の...
-
平面方程式の傾きについて
-
2点の座標を直線の式にするには。
-
2つの円の交点を結んだ直線と中...
-
円の中心の求め方
-
「共有点」と「交点」の違い。
-
数Bの漸化式の問題についての質...
-
軌跡の問題です。 放物線y=x^2...
-
球面と接する直線の軌跡が表す領域
-
曲線y= f(x)上の任意の点Pで引...
おすすめ情報