
実験はプラスチック板の上に白紙をのせ、さらに上にカーボン紙をのせてさらにその上に導電紙をのせて小型万力で締め付け、プラスチック板の裏の電池で、電気を流し、テストリードで等電位の点を探して等電位線と電気力線を引くというものです。
わからないことは等電位線が導電紙の端(境界)あたりにくると、境界に直行する傾向になるのはなぜか。ということです。このサイトでも調べて同じ質問があったのですが、回答が難しくてわかりませんでした。僕にでもわかるように教えてください。
あと、導電紙の上に導体(ステンレスの円柱)をのせて、等電位線と電気力線を引くことをしました。実験の説明部分に導電紙と静電場という題目で(a)導体内部には電場がなく、いたるところでE=0である。(b)導体内部と表面はどこでも電位V=一定である。(c)電気力線は導体内部に存在しない。導体表面の負の電荷で電気力線は終わり、表面の正の電荷から始まる。また、導体表面は等電位面であるので電気力線と導体表面とは直行する。(d)導体の電化は表面にだけ存在し、内部にはない。(e)導体表面近くの電場は、表面電化密度ρとするとE=ρ/ε0となる。とあり、考察部分に(b)(d)(e)を証明せよ。とあるのですが、分かりません。バカですみません。
この4つの中で1つでも分かる方がいらっしゃればどうか回答よろしくお願いします。
No.1ベストアンサー
- 回答日時:
以前の回答というのはどのような回答だったのかわかりませんが、他に回答がつかないようなのでお答えします。
導電紙の実験では真空中や空気中の電界と違って電界の向きに直交する電流が流れます。逆に言えばこの電流による電圧降下が電位差、電界を発生していると言う事ができます。この実験では電流が無い所に電位差、電界は生じません。導電紙の端部の電流は紙の外側に向かう成分がゼロ、即ち端部に直交する電流はゼロであることはおわかりかと思います。このため端部に直交する向きには電圧降下が生じません。これに対して境界に沿った電流成分は必ずしもゼロではないので、電位は端部に沿って変化します。即ち等電位線は紙の端部に直交します。(b)(d)の証明は、もしそうでなければ(a)に反するというようなことでも良いのでしょうか。又(e)はマクスウエルの方程式から説明しても良いのでしょうか。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
電磁気の問題がわかりません
-
はく検電器の同電位について
-
静電遮蔽された導体球殻中心の電位
-
内半径b,外半径cの円筒導体の中...
-
図のように球導体と球導体を包...
-
導線で繋がれた極板はなぜ等電...
-
電磁気の問題です(電流密度)
-
電磁気学の問題について教えて...
-
円筒の電荷密度
-
電磁気の問題で質問です。
-
内球(r=a) と外球殻(内半径b 外...
-
電磁気学
-
導線は電圧が0でも電流が流れ...
-
(3)は導体円柱それぞれをオーム...
-
導体表面の電界
-
電磁気分野における導体板に流...
-
1図のような同心球導体系の電位...
-
BNCコネクタの見分け方
-
半径aの空洞を持つ円柱導体の周...
-
半径 a と半径 b (b > a) の厚...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
導線で繋がれた極板はなぜ等電...
-
静電遮蔽された導体球殻中心の電位
-
人体をコンデンサとみなせる理由
-
磁界中の平行レール上を運動す...
-
内半径b,外半径cの円筒導体の中...
-
等電位線と電気力線という実験...
-
3つの同心導体球を1つのコンデ...
-
電磁気の問題
-
導線は電圧が0でも電流が流れ...
-
CVの電流と温度上昇の計算方法
-
電磁気学
-
物理の問題です
-
内部インダクタンスの計算方法...
-
電気抵抗をR,導電率をκ,静電...
-
電磁気 肉厚が極めて薄く、無限...
-
単位「cond」とは?
-
電圧とは?
-
半径a、長さLの円柱状導体(透磁...
-
図のように球導体と球導体を包...
-
半径aの空洞を持つ円柱導体の周...
おすすめ情報