プロが教えるわが家の防犯対策術!

断面二次極モーメントを調べたところ、
Ip=∫A r2dAで表せるのが、わかりました。
もし企業の面接などで、小中学生にもわかるように説明しろと言われた場合、どのように答えれば宜しいのでしょうか?
わかりやすく説明ができる人がいたら教えて下さい。
お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

返事遅れてすいません。


確かにあまりにも説明不足でしたね^^;

断面二次モーメントとは、ようするに変形のしやすさのことです。断面一次モーメントと違って、距離の2乗をかけるので「二次」になっているわけです。

断面二次モーメントならこんな感じで説明できるんですが・・・断面二次極モーメントとなると小学生にわかるように説明するのは私には難しいかもしれません。
一応説明しておきますと、例えばある物体があったとして、直交座標軸x、yをとります。その原点を通ってx、y軸に垂直な軸に関する断面二次モーメントが「断面二次極モーメント」です。ちなみに、計算するときはx、y軸のそれぞれの断面二次モーメントを求めれば、それを足し合わせたものが断面二次極モーメントになります。

これじゃ簡単な説明とは言えないでしょうか^^;
    • good
    • 0
この回答へのお礼

いえいえ。簡単な説明ですよ^^とても助かります。
前に回答をいただいた方と二つあわせてとてもいい回答ができます。本当に助かりました。
ありがとうございます。

お礼日時:2003/12/15 01:39

断面二次極モーメントでなく


断面二次モーメントなら分かります。
その値により棒状の物体に折り曲げる力を加えた際、どれくらいたわむかを知るための数値です。

まだタテに裂いていない割り箸を中央から折り曲げる際、幅の広い方に親指をあてがって曲げる方が、幅の狭い方よりしなりやすくなります。

これは断面2次モーメントの値が前者の方が小さいためです。しなり易さは断面2次モーメントの値によるものでして、しなろうとしている棒(割り箸)の断面形状によって値が変わります。

仮に1cmx2cm(親指に接しているところの幅が2cm) の断面形状の割り箸のたわみ易さはk/2(kはある比例定数)
2cm x 1cmを(親指に接しているところの幅が1cm)わまk/8 となり4倍違うのです。

参考ですが、
たまたま割り箸の断面形状が長方形のため、断面2次モーメントIpの計算はし易くなります。

Ip=bh^3/12 (b:幅 h:厚み)です。

またたわみ量をvとすれば
v=k/Ipとなります。
kは比例定数で、割り箸の長さ、加える力、割り箸の材質によるものです。

参考URL:http://www.geocities.co.jp/Technopolis-Mars/2587 …
    • good
    • 0
この回答へのお礼

大変わかりやすい回答ありがとうございました。
割り箸の例などとてもよくわかりました。
感謝しています。

お礼日時:2003/12/15 01:35

企業の面接として適当かどうかはわかりませんが、


「断面の形(形状)や大きさ(寸法)で決まる値」といったところではないでしょうか。
小中学生にわかるように、となると積分を使うわけにはいきませんよね。
どういう場面で使われるのか、などの説明を付け加えると良いかもしれません。
    • good
    • 0
この回答へのお礼

さっそくの回答ありがとうございます。
そうですね、確かに形状や寸法で決まる値ですね、確か断面一次モーメントも形状や寸法で決まる値だったような気がします。
もうちょっとわかりやすい説明を教えていただけないでしょうか?
本当にずうずうしくて、ごめんなさい

お礼日時:2003/12/13 19:38

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q長方形断面の断面2次極モーメントについて

長方形断面の断面2次極モーメントIpを調べていくと、サンブナンのねじり定数Jという言葉がでてきます。
使い方がどれも混同してて、よくわかりませんでした。
で、一つ目の質問。

(1)長方形断面の断面2次極モーメントIpのことを、サンブナンのねじり定数Jと言うのですか?

長方形断面の断面2次極モーメントIpの値を知りたいのですが、一般にIp=Ix+Iyとなっています。

(2)a×b断面だとすると、Ip=(ab(a^2+b^2)/12となると思うのですが、これは間違いですか?

Aベストアンサー

私は,サンブナンのねじり定数という言葉は知らないのですが,以下のような意味だろうと推測致します。

(1)回転対称断面の場合,断面2次極モーメント(Ip)は,部材のねじり抵抗係数で,
Ip=∫r^2・dA=Ix+Iy
にて算定します。
ねじりモーメント(Mt)によって,ねじり角(θ)が生じたとすると,ねじり角は,
θ=Mt/(G・Ip)
で算定できます。この時の,
(G・Ip)
は,サンブナンのねじり剛性(torsional stiffness 又は torsional rigidity)と呼ばれる定数です。
ただし,(G)は,剪断弾性係数です。サンブナンのねじり定数というのは,多分,この「ねじり剛性」の事だと思うのですが,如何でしょうか。

(2)長方形断面(axb)の場合,
Ip=Ix+Iy=(a^3・b/12)+(a・b^3/12)
ですので,
Ip=(ab(a^2+b^2))/12
です。

Q断面係数と極断面係数

断面係数と極断面係数の違いについて質問です。
中実丸棒の場合、断面係数Zは

Z=πd^3/32

ですが、極断面係数Zpは

Zp=πd^3/16 となっています。

断面係数は(断面二次モーメント)÷(中立軸からの最大距離)で計算できますが、極断面係数はどうやって計算するのでしょうか。

Aベストアンサー

 断面の正面図が、紙に書かれていると想像して下さい。曲げ作用は、紙面上に横に引かれた中立軸を中心に、断面全体を「紙の前後に回転」させます。
 ねじり作用は、「紙面に垂直な」中立軸を中心に、断面を「紙面内で回転」させます。
 だけど、中立軸を求める発想はどちらも同じです。曲げ作用なら、
  ・曲げ歪みは、中立軸からの符号付き距離に比例する。
  ・曲げモーメントは偶力だから、応力合計は0。
  ・応力は歪みに比例する。
という事から、断面剛性一定なら、
  ∬(y-y0)dxdy=0
から中立軸位置y0を計算できます。∬の積分範囲は断面全体で、結果は重心ラインです。
 ねじり作用なら、同じ仮定から、
  ∬|r|e(r)dxdy=0
で計算できます。ここでベクトルrは、ねじりの中立軸位置を(x',y')とした場合、r=(x-x',y-y')で、e(r)はrと左回りに直行する単位ベクトルです。結果は断面剛性一定なら、重心位置を(x0,y0)として、
  (x',y')=(y0,x0)
だったと思います(確認してください)。円形断面なら、やっぱりその中心になります。
 最後に、極断面二次モーメントも、断面二次モーメントと同じ発想で、
  Ip=∬|r|^2dxdy
です。

 断面の正面図が、紙に書かれていると想像して下さい。曲げ作用は、紙面上に横に引かれた中立軸を中心に、断面全体を「紙の前後に回転」させます。
 ねじり作用は、「紙面に垂直な」中立軸を中心に、断面を「紙面内で回転」させます。
 だけど、中立軸を求める発想はどちらも同じです。曲げ作用なら、
  ・曲げ歪みは、中立軸からの符号付き距離に比例する。
  ・曲げモーメントは偶力だから、応力合計は0。
  ・応力は歪みに比例する。
という事から、断面剛性一定なら、
  ∬(y-y0)dxdy=0
...続きを読む

Qねじり剛性係数と断面二次モーメントの関係

ねじり剛性係数と断面二次モーメントの関係
縦横XYの断面二次モーメント値からねじり剛性係数、またはそれに相等するねじり変形しにくさを表す数値を出す方法を探しています。

いつくかある断面形状のねじり強さの比率を知りたいのです。材質は考慮しません。
単純にXYの断面二次モーメント値をかけ算して、その値の比率で判断していいものでしょうか?

具体的には乗り物のフレームを設計して、すでに一度専用のパイプを試作しました。
予想以上に強かったので断面を小さくして軽量化を図りたいのですが、一体どれくらい落としてよいものか判断がつかないのです。
結局は当てずっぽうなのですが、最初のものに比較して何%ダウンという指標があれば有力な判断材料となります。
宜しくお願いいたします。

Aベストアンサー

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断面の両端面が変形後も平面となるように拘束されている場合(全周溶接などによって)には、Jはやはり式(2)で定義できます。
今の質問の構造の場合、フレームと書いていらっしゃるので、棒の両端面はしっかりと拘束されていると思われ、式(2)が適用できます。

これがあなたの質問に対する直接の回答となります。

以上のほか、棒の断面の両端面が変形後も平面となるように拘束されていない場合のケースについて補足説明しておきます。
棒を両手で握って捩ると、断面が円でない場合には、両端面が変形後は軸方向に波打った形状となって、平面とはなりません。(この現象が顕著に現れる例としては、紙を丸めて筒状にして捩った場合があげられます。)
このような捩りの状態を「サン・ブナンの捩り」と呼びます。
断面が長方形の棒を、両端を溶接せず、補助金具などを用いて、他の部材にねじ止めしているような場合には、このサン・ブナンの捩りが発生しやすくなります。
この場合の注意としては、
J<<Ip ・・・(3)
となってしまうことです。
この場合の取り扱い方については、一般の材料力学の本はごまかしているのが普通です。
あなたの場合、「予想以上に強かった」と書かれているので、サン・ブナンの捩りの状態ではなく、両端面がガッシリと他部材に溶接されているケースと推測しています。

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q断面二次モーメントと慣性モーメント

現在物体の慣性モーメントを求めようとしています.

そこで疑問が生じたので質問します.

材料力学では断面二次モーメント=慣性モーメント
となっています.

ですが慣性モーメントって∫r^2 dmですよね?

次元が全く違うしなぜ慣性モーメントなんでしょうか?

また慣性モーメントと断面二次モーメントの関係があれば教えてください

よろしくお願いします.

Aベストアンサー

そうですね。#3の説明は,理解するには良い方法と思いますが,厳密に言うと違います。

慣性モーメントの定義を分かりやすく簡単に説明すると,慣性力は物体が現在の状態を維持しようとする力,つまり,物体の運動や変形に抵抗する力の事です。モーメントというのは回転に関する運動率,つまり,回転に関する係数です。合わせて,回転に対する抵抗係数が慣性モーメントです。

係数ですから次元に関係はありません。と言うよりも,適用される状況によって異なった次元を持ってもかまわないと言うことです。

そこで,慣性モーメントとは,動力学では,回転運動に対する抵抗係数で,静力学では,回転変形(曲げ変形)に対する抵抗係数です。

J=∫r^2 dmやI=∫r^2 dAという算定式は,一般的に解釈すれば,「慣性モーメントは,物体が物体の任意の軸に関して,物体内の微小部分と軸から微小部分までの距離の2乗との積を全物体について合算した値である」と定義できると思います。
質量慣性モーメントの場合,この微小部分が微小質量であり,断面2次モーメントの場合微小部分が微小断面積になります。

そこで,
>「材料力学では」断面二次モーメント=慣性モーメント
という定義がされているものと思いますが,ここでは,「材料力学では」と言う条件が重要な部分だと思います。

でも,こんな説明をしている書籍を見たことはありません。断定的な説明をしていますが,私の理解している内容を文章にしただけですので,ほぼ合っていると思いますが,多少の違いがあるかもしれません。他の専門家の意見も聞いて頂くと良いと思います。

そうですね。#3の説明は,理解するには良い方法と思いますが,厳密に言うと違います。

慣性モーメントの定義を分かりやすく簡単に説明すると,慣性力は物体が現在の状態を維持しようとする力,つまり,物体の運動や変形に抵抗する力の事です。モーメントというのは回転に関する運動率,つまり,回転に関する係数です。合わせて,回転に対する抵抗係数が慣性モーメントです。

係数ですから次元に関係はありません。と言うよりも,適用される状況によって異なった次元を持ってもかまわないと言うことです。
...続きを読む

Q断面2次モーメントと断面係数の違い

断面2次モーメントと断面係数の違いなんですが

断面2次モーメントとは、部材の変形のしにくさを表して、断面2次モーメントが大きいと、たわみにくく座屈しにくいことを示す。
それに対して断面係数は、部材の曲げ強さを表し、断面係数が大きいと曲げに対して強いことを示す。

なんですが、思うにたわみにくさと曲げ強さはイコールではないのですか?

断面2次モーメントが大きいと曲げに対しても強い。
断面係数が大きくてもたわみににくい。

とはかならずしもならないのでしょうか?
いまいち区別してる意味がよくわかりません
ご教授くださいませんか

Aベストアンサー

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超えた時に破壊する。

この時,(A)部分の負担する力(T)が同じならば,(A)の面積(=)が大きい程破壊しにくい。又,中心点からの距離(J)が大きいと破壊しにくい。簡単に言ってしまえば,この時の(A)の面積と距離(J)を掛けたものが,曲げ外力に抵抗する抵抗曲げ強度を決めるための係数,即ち,断面係数(Z)です。

つまり,曲げ強度に影響を与える断面係数は,材料の材質,強度,変形などに関係なく,形状と距離だけで決まります。

一方,(A)部分に作用した引張力(T)は,(A)部分を伸ばす,即ち,変形させます。この時の変形量は,フックの法則によって,形状,距離に加えてヤング係数によって決まります。
この時,変形量は断面の外縁が最も大きく,中心位置に近いほど小さくなります。この時の形状の変化率を表すのが断面2次モーメントです。
(A)部分が引張によって伸び,(B)部分が圧縮による縮んだ結果,この材料はδ方向に変形します。この変形量がたわみです。

つまり,断面係数と断面2次モーメントは,公式は似ていますが,断面係数は曲げ抵抗強度に関する量であり,断面2次モーメントは変形率に関する量であって,お互いに全く関連性のない形状に関する係数です。

// たわむ=まがる
は,変形に関するもので,強度とは関係有りませんので,断面2次モーメントにだけ関係する語句です。(たくさん曲がっても=たわみが大きくても,破壊するとは限らない。)

これを踏まえて,

// たとえば
// I>Zの場合だと割り箸のようにたわみにくいけど折れやすく
// I<Zの場合だと釣竿のようにたわみやすいけど折れにくい
// とかだとイメージできるんですが

というのは,上記の断面係数と断面2次モーメントの理屈から言うと,正解とは言えませんが,結果的に,強度とたわみの関係を言い表している,とっても素敵な例として有効だと思います。(今後,私にも使わせてください。)

この例の(I)を,曲げ剛性(EI)と言い換えれば,強度と変形の関係を表す例として完璧かもしれません。つまり,変形=たわみの話をする時,(I)が単独で使われることはなく,常に一組の概念として,曲げ剛性(K=EI)として使われる,と言うことです。

これらの断面に関する諸量は,構造力学や材料力学において,数学的に積分を用いて説明され,イメージとして説明されることはほとんど有りません。ですから,実際に計算する事は出来ても,どのようなイメージかと聞かれると答えに窮して仕舞うのも仕方ない事だと思います。私もその一人ですが・・・

どちらにしても,断面係数と断面2次モーメントの関連性について,1級建築士でもイメージする事が難しい概念ですから,イメージ化して素人に説明するのは,多少無理があると思います。

先ず,「曲げ強さ」と「たわみにくさ」から整理しましょう。

     +-- M --+ 
     ↑T        ↓C
P → =------=   →δ
    |A    |   B|
    |   J    J  |
    |          |
(絵が巧く書けません)
荷重(P)によって,曲げモーメント(M)が生じる。
曲げモーメントは,材料の左と右に引張力(T)と圧縮力(C)を生じさせる。
(A)部分(=)は引張強度を超えた時に破壊し,(B)部分(=)は圧縮強度を超え...続きを読む

Q引張応力とせん断応力の合成応力?

物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?
引張応力とせん断応力を合成した応力が存在し,それが許容応力以下かを調べる必要があるのでしょうか?
その場合は,計算方法も教えて欲しいです.

Aベストアンサー

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する」は同義語ではありません。

一般的な許容応力法の検討では、

3次元物体には、3方向(x、y、z)の材軸が存在します。この物体に3方向の軸力と剪断力が同時に作用する場合、この物体に生じる最大応力は、
σmax=√(σx^2+σy^2+σz^2+3τ^2)
で求めることができます。

もし、同時に剪断力を受ける物体が細長い物体で、1方向(x方向)にのみ引張りが生じているならば、
σy=σz=0
となって、
σmax=√(σx^2+3τ^2)
で計算することができます。この最大応力が許容応力を超えないことを確かめます。

多少、簡単に書きすぎたかもしれませんが、基本的な流れとしては、合っていると思います。
また、破壊についても基本的な考え方は同じですが、式の表現方法が多少異なり、より詳細な表現がされ、比較の対象が「許容応力」ではなく「降伏応力」になります。

詳しくは、応力テンソル、ミーゼス、トレスカなどのキーワードをgooなどで検索すると詳しい説明のあるサイトを見ることができます。

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する...続きを読む

Q比重の単位って?もうわけわからない・・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??なぜ、この場合、厚さだけはmmの単位で、縦と横はmでの計算をするのでしょうか?

比重ってのは単位はどれに合わせてすればいいのでしょうか?

そして円筒の場合はどのように計算するのでしょうか?
まず、円の面積を求めて、それに長さを掛けるのですよね?
これは円の面積の単位はメートルにして、長さはミリで計算するのでしょうか??
わけわからない質問ですみません・・・。もうさっぱりわけがわからなくなってしまって・・。うんざりせずに、解かりやすく、教えてくださる方いましたらすみませんが教えて下さい・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??...続きを読む

Aベストアンサー

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g/cm3)=471g=0.471kg
と計算します(cmとgで計算しているのでCGS単位系と呼びます)

円筒の場合も同様に
体積×密度で求めます
円筒の体積=底面積(円の面積半径×半径×円周率)×高さ
です

比重=密度で計算するならば、水が1gになる体積1cm3を利用するために長さの単位をcmに直して計算してください
計算結果はgで出るのでこれをkgに直してください

最初からkgで出したい時は
水の密度=1000(kg/m3)
(水1m3の重さ=100cm×100cm×100cm×1g=1000000g=1000kg)
を利用して
目的の物質の密度=1000×比重(kg/m3)
でも計算できます
(このようにm kgを使って計算するのがSI単位系です)

0.1×0.1×6×7.85は#4の方がおっしゃるとおり
0.1×0.1×0.006×1000×7.85の0.006×1000だけ先に計算したのだと思います

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g...続きを読む

Q台形の重心を求めるには

上底a 下底b 高さ h とした場合、台形の重心をもとめる公式は、 (2a+b)/(a+b)*h/3 でよろしいでしょうか?

Aベストアンサー

計算してみました。
面積
 A=(a+b)h/2
下底周りの断面一次モーメント
 S=a・h^2/2 + (b-a)h^2/6
  =h^2(2a+b)/6

重心位置、S/Aですから、
 G=(2a+b)/(a+b) ・ h/3

合ってますね。

Q降伏点 又は 0.2%耐力とはなんですか?

降伏点 又は 0.2%耐力というものを教えて下さい。
SUSを使って圧力容器の設計をしようとして、許容引張応力とヤング率だけでいいと思っていましたが、どうも降伏点 又は 0.2%耐力というものも考慮しなければいけないと思ってきました。
どなたかご助言お願い致します。

Aベストアンサー

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現れます。
 これを降伏と呼びます。

 一般に設計を行う場合は、降伏強度に達することをもって「破壊」と考えます。
 降伏強度は引張強度より低く、さらに降伏強度を安全率で割って、
 許容応力度とします。大きい順に並べると以下のような感じです。

 引張強度>降伏強度>許容応力度

●0.2%ひずみ耐力
 普通鋼の場合は降伏点が明確に現れます。
 引張荷重を上げていくと、一時的にひずみだけが増えて荷重が抜けるポイントがあり
 その後、ひずみがどんどん増え、荷重が徐々に上がっていくようになります。

 ところが、材料によっては明確な降伏点がなく、なだらかに伸びが増えていき
 破断する材料もあります。鋼材料でもピアノ線などはこのような荷重-ひずみの
 関係になります。

 そこで、このような明確に降伏を示さない材料の場合、0.2%のひずみに達した強度を
 もって降伏点とすることにしています。

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング