No.1ベストアンサー
- 回答日時:
この問題の意味はこれ以上説明できないので、解答を。
(1)sinθ cosθ>0⇔「sinθ>0,cosθ>0」・・・(I)または「sinθ<0,cosθ<0」・・・(II)
ここで0°<θ<180°より0<sinθ<1,-1<cosθ<1なので、(I)が該当するのでθは鋭角。
(2)sinθ cosθ<0⇔「sinθ>0,cosθ<0」・・・(III)または「sinθ<0,cosθ>0」・・・(IV)
ここで0°<θ<180°より0<sinθ<1,-1<cosθ<1なので、(III)が該当するのでθは鈍角。
(3)tanθ=sinθ/cosθ<0⇔「sinθ>0,cosθ<0」・・・(V)または「sinθ<0,cosθ>0」・・・(VI)
ここで0°<θ<180°より0<sinθ<1,-1<cosθ<1なので、(V)が該当するのでθは鈍角。
No.3
- 回答日時:
>0°<θ<180°とする。
次の条件を満たす角θ鋭角、鈍角のどちらか。0°<θ<90°のときθは鋭角,90°<θ<180°のときθは鈍角 (θ=90°のとき直角)
0°<θ<90°のとき0<sinθ<1,90°<θ<180°のとき0<sinθ<1
0°<θ<90°のとき0<cosθ<1,90°<θ<180°のとき-1<cosθ<0
0°<θ<90°のときtanθ>0,90°<θ<180°のときtanθ<0
>(1) sinθ cosθ>0
sinθ>0, cosθ>0またはsinθ<0, cosθ<0の場合があるが
この場合は、両方とも正のとき、0°<θ<90°のときだから、θは鋭角
>(2) sinθ cosθ<0
sinθ, cosθのうち片方が正,片方が負の場合
この場合は、sinθ>0, cosθ<0で,90°<θ<180°のときだから、θは鈍角
>(3) tanθ<0
90°<θ<180°のときだから、θは鈍角
何かあったらお願いします。
No.2
- 回答日時:
質問に的確に回答してませんが、
問題の解き方は以下でいいと思います。
知識として入っているなら別ですが、
まずは、下調べとして、
鋭角→0°<θ<90°
鈍角→90°<θ<180°
で場合分けをして、それぞれの場合で
sinθと cosθと
tanθ=sinθ/cosθ
の正負を求めてみればいいですよ。
その上で問題を解いてみたらどうですか?
(1)掛け算が正になるものは
++でかけたときか、--でかけたとき。
でも、0°<θ<180°の制約がついているので++しかない。
みたいな感じで。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
【お題】 ・存在しそうで存在しないモノマネ芸人の名前を教えてください
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
【お題】引っかけ問題(締め切り10月27日(日)23時)
【大喜利】 「日本で一番高い山は富士山……ですが!」から始まった、それは当てられるわけ無いだろ!と思ったクイズの問題
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
0°≦x≦180°とする。sinθ、cosθ、tanθのうち、 1つが次の値をとるとき、他の二つの値
高校
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
θが鈍角のとき、sinθ=4分の3の...
-
e^iθの大きさ
-
二つの囲まれた楕円の共通の面...
-
0°<θ<180°とする。4cosθ+2sinθ=...
-
sinφ(ファイ)の求め方を教えて...
-
sinθ+cosθ=1/3のとき、次の式の...
-
次の三角比を45°以下の角の三角...
-
3辺の比率が3:4:5である直...
-
この問題の半径rと中心核αの扇...
-
画像のように、マイナスをsinの...
-
【数II/三角関数】 Q.次の値を...
-
数学Iで分からない問題があります
-
tanθ=2分の1のときの sinθとcos...
-
tan150°の求め方教えてください!
-
急いでます! θが鈍角で、sinθ...
-
高1 数学 sin cos tan の場所っ...
-
平面図形、線分の長さの最大値
-
加法定理の応用問題でcosα=√1-s...
-
合成関数の微分について
-
答えがマイナスになる理由が分...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^iθの大きさ
-
tanθ=2分の1のときの sinθとcos...
-
高1 数学 sin cos tan の場所っ...
-
画像のように、マイナスをsinの...
-
3辺の比率が3:4:5である直...
-
急いでます! θが鈍角で、sinθ...
-
教えてください!!
-
加法定理の応用問題でcosα=√1-s...
-
数学Iで分からない問題があります
-
sinθ+cosθ=1/3のとき、次の式の...
-
次の三角比を45°以下の角の三角...
-
sin2xの微分について
-
数学 2次曲線(楕円)の傾きの計...
-
sin(ωt+θ) のラプラス変換
-
三角関数の合成
-
θが鈍角のとき、sinθ=4分の3の...
-
Merchantの最小抵抗説(微分?...
-
式の導出過程を
-
赤丸をつけたところで質問があ...
-
複素数表示をフェーザ表示で表...
おすすめ情報