
3次元(xyz)におけるX軸に対する軸対称(回転対称)は、
3次元の回転行列を用いて、
1 0 0
0 cosθ -sinθ
0 sinθ cosθ
θ=πとすると
1 0 0
0 -1 0
0 0 -1
と教えて頂きました。
前回の質問:http://oshiete.goo.ne.jp/qa/7596237.html
その他の、y軸,z軸対称も同様に、y軸の回転行列
でθ=π,z軸の回転行列でθ=πとすれば導けるでしょうか?
また、2次元(xy)における回転行列は、
cosθ -sinθ
sinθ cosθ
です。
これにθ=πを代入すると、
-1 0
0 -1
となります。
しかし、2次元における軸対称は
1 0
0 -1
となると思います。
どこが間違っているのでしょうか?
以上、ご回答よろしくお願い致します。
No.9
- 回答日時:
>xy平面での対称と、xz平面での対称は異なります(7ページ目)。
xy平面の対称の行列は少し間違ってますが、異なりますね。
>x軸対称がxy平面対称と等しいです。
y軸対称がyz平面対称と等しいです。
z軸対称と同じくになる平面対称は記載されていません・・・
2Dのx軸対称が3Dのxy平面対称と等しいと言っているのですか?
本来は2Dのx軸対称が、3Dのxy平面対称とxz平面対称と等しい です。
3Dのx軸対称は、yz平面で切ると2Dの原点対称になります。
この回答への補足
何度もご回答本当にありがとうございます。
>xy平面の対称の行列は少し間違ってますが、異なりますね。
3Dのxy平面対称とxz平面対称は等しいということですが、
xy平面とxz平面は等しいのか異なるのかどちらなのでしょうか?
理解できないのは、軸対称と平面対称の関係です。
3Dでx軸対称の移動がxy平面対称と等しい事よくわかっていません。
x軸対称なのになぜ、xy平面(zと法線方向)なのでしょうか?
以上、お手数をお掛けしますがご回答よろしくお願い致します。
No.8
- 回答日時:
>3次元のzx平面の面対称は2次元における
x軸対称に相当すると考えています。
これは、3次元におけるxの軸対称ではないの
でしょうか?
面対称になっているものを2Dにしたら→xy平面で切ったものになります。
この時、2Dでのx軸対称。
3Dでx軸対称と言ったらxy平面にもxz平面にも切れる→y方向にもz方向にも対称を作れる。
>対称な移動を考える場合に、3次元において平面を使って
作ることはしないのでしょうか?
?
この回答への補足
いつもご回答ありがとうございます。
http://school.gifu-net.ed.jp/ena-hs/ssh/H22ssh/s …
では、
xy平面での対称と、xz平面での対称は異なります(7ページ目)。
x軸対称がxy平面対称と等しいです。
y軸対称がyz平面対称と等しいです。
z軸対称と同じくになる平面対称は記載されていません・・・
理解力がなくて申し訳ありませんがもう少しお付き合い下さいm(_ _)m
ご回答よろしくお願い致します。
No.7
- 回答日時:
>xyz座標でxz平面対称とx軸対称は異なるでしょうか?
面対称では、y軸しか反転しません。
x軸対称では、それに直交する事がy軸とz軸の両方が反転できます。
xy平面に射影を取れば一見どちらも一緒に見えますが、3次元では別物です。
この回答への補足
ご回答ありがとうございます。
すいません。
ちょっと理解出来ていません・・・
具体的に例えば、
Y
↑
Z・→X
の3次元の座標系があるとします。
Zの正方向は手前です。
3次元のzx平面の面対称は2次元における
x軸対称に相当すると考えています。
これは、3次元におけるxの軸対称ではないの
でしょうか?
対称な移動を考える場合に、3次元において平面を使って
作ることはしないのでしょうか?
申し訳ございませんが、ご回答よろしくお願い致します。
No.6
- 回答日時:
>つまり、3次元の軸対称移動の
1 0 0
0 -1 0
0 0 -1
から、3行と3列を除いて(縮退?)導くということなのでしょうか?
3行目と3列目とはz成分に相当するのでしょうか?
3次元でx軸で回転させた場合、x-y平面またはx-z平面ではx軸対称となります(θ=π+2πnのときのみ)。
結局、高次元で回転させたものの射影をとっているだけです。
x-y平面しか見ないようなz軸を必要としないならば、それを欠いても良いということです。
別平面でも同じです。
>y軸における回転行列は、
cosθ 0 -sinθ
0 1 0
sinθ 0 cosθ
で、y軸対称な移動はθ=πを代入すれば良いのでしょうか?
また、z軸も同様でしょうか?
同様です。いろいろなパターンを試してみて、確かにそうなることは自分の目で確かめてください。
この回答への補足
ご回答ありがとうございます。
>いろいろなパターンを試してみて、確かにそうなることは
>自分の目で確かめてください。
自分でやってみます。
ちょっと気になったのですが、
xyz座標でxz平面対称とx軸対称は異なるでしょうか?
http://school.gifu-net.ed.jp/ena-hs/ssh/H22ssh/s …
の資料をみたのですが、軸対称と平面対称がイマイチ理解できません・・・
以上、ご回答よろしくお願い致します。
No.5
- 回答日時:
補足で、
1 0 0
0 -1 0
0 0 -1
でx-y平面を表したかったら、zを含む3行と3列を除けば
1 0
0 -1
となることから確かめられます。
x-y平面で回転
cosθ -sinθ
sinθ cosθ
を考えたい場合、実は3次元では
cosθ -sinθ 0
sinθ cosθ 0
0 0 1
となります。y軸回転を考えたい場合は、2行と2列に
cosθ 0 -sinθ
0 1 0
sinθ 0 cosθ
のように行と列を挿入するだけです。
この回答への補足
ご回答ありがとうございます。
つまり、3次元の軸対称移動の
1 0 0
0 -1 0
0 0 -1
から、3行と3列を除いて(縮退?)導くということなのでしょうか?
3行目と3列目とはz成分に相当するのでしょうか?
y軸における回転行列は、
cosθ 0 -sinθ
0 1 0
sinθ 0 cosθ
で、y軸対称な移動はθ=πを代入すれば良いのでしょうか?
また、z軸も同様でしょうか?
以上、ご回答よろしくお願い致します。
No.4
- 回答日時:
>2次元の場合は、原点を回転軸として考えていましたが
>これがz軸に相当するのでしょうか?
その通りです。
>x軸で折り返す(x軸対称)ようにする行列はどのように…
その考えでOKです。3次元で考えたものを輪切りしたものが2次元といった認識でいいとおもいます。
No.2
- 回答日時:
「どこが間違っているのでしょうか」と言われると
どのような操作なのかを理解せずただ記号で遊んでいるだけというところが間違っている
としか言いようがない....
この回答への補足
ご回答ありがとうございます。
x軸に関する対称移動を表す1次変換の行列を
説明したサイトを以下に示します。
http://www.geisya.or.jp/~mwm48961/kou2/linear_tr …
理解できない点は、3次元で考えた対称移動の手法を2次元で
考えるとつじつまが合わなくなってしまう点です。
対称移動の根本が理解できていないのでしょうか?
以上、ご回答よろしくお願い致します。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 y軸周りの回転行列は ふたつとも間違いですか? 色々探しても cos 0 sin 0 1 0 -si 6 2023/04/24 00:01
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 線形代数の対称行列についての問題がわからないです。 2 2023/01/08 14:59
- 数学 【 数I 2次関数の対称移動 】 問題 ※写真 疑問 放物線y=2x²+xをy軸に関して対称移動 す 3 2022/07/02 23:28
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 工学 周波数fで表現したフーリエ変換の対称性に関する質問です。 1 2022/09/14 12:27
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 物理学 物理 2 2023/01/17 13:31
- 大学・短大 【線形代数について質問です】 点(4.3)を点(3.4)に写す1次変換のうち、原点を通る直線について 1 2023/06/11 14:29
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の関数極限の問題を教えて...
-
cos{θ-(3π/2)}が-sinθになるの...
-
三角関数の合成
-
【至急】数llの三角関数の合成...
-
2変数関数の最大値・最小値
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
ベクトル解析で半球の標準的な...
-
わからない問題があります
-
複素積分の求め方。
-
面積
-
関数の問題です。 関数f(θ)=cos...
-
三角関数
-
日本数学オリンピック2000年予...
-
f(x)=√2sinx-√2cosx-sin2x t...
-
高校数学
-
ヤコビアンの定義について
-
sinθ=-1/√2がθ=5/4π、7/4πと...
-
arctanのフーリエ級数展開について
-
三角関数の質問です。
-
sin1,sin2,sin3,sin4の大小を比...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の関数極限の問題を教えて...
-
cos{θ-(3π/2)}が-sinθになるの...
-
0≦θ≦2πのとき、sin2θ+cosθ=0の...
-
日本数学オリンピック2000年予...
-
【至急】数llの三角関数の合成...
-
sinθ―√3cosθ=a(θ+α)の形にした...
-
離散フーリエ変換(DFT)の実数...
-
三角関数の「1/3倍角の公式...
-
面積
-
正弦波の「長さ」
-
0≦x<2πの範囲で関数y=-√3sin...
-
渦巻きの数式を教えてください...
-
x^2=i
-
数学の問題教えてください
-
積分の計算について
-
余弦の和
-
円環の体積 断面積が半円の内側...
-
ベクトル場の面積分に関してです
-
sinθ=-1/√2がθ=5/4π、7/4πと...
-
なんで4分の7πではなく −4分のπ...
おすすめ情報